Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5229–5234 | Cite as

Orientation-Dependent Tensile Behavior of Nanolaminated Graphene-Al Composites: An In Situ Study

  • Xidan Fu
  • Zan LiEmail author
  • Qiang GuoEmail author
  • Genlian Fan
  • Zhiqiang Li
  • Ding-Bang Xiong
  • Zhanqiu Tan
  • Yishi Su
  • Shmuel Osovski
  • Di Zhang


We conducted in situ microtension experiments in a scanning electron microscope (SEM) to study the orientation-dependent mechanical behavior of nanolaminated graphene-Al composite. We found a transition from a weak-and-brittle behavior in the isostress composite configuration to a strong-yet-ductile tensile response in the composite under isostrain condition. This is explained by the excellent load-bearing capacity of the graphene nanosheets and a crack deflection mechanism rendered by the laminate structure. These in situ measurements enabled direct observation of the deformation procedure and the exact failure mode, which highlight the importance of microstructural control in tailoring the mechanical properties of advanced metal matrix composites (MMCs).


This work was supported by the Ministry of Science and Technology of China through the National Key R & D Plan (Grant Nos. 2017YFB0703103 and 2016YFE0130200), the Natural Science Foundation of China (Grant Nos. 51771111, 51671130, and 51771110), and the Science & Technology Committee of Shanghai Municipality (Grant No. 17520712400). The authors thank Dr. Warren Oliver, Dr. Yujie Meng, and Sam Bacon, Nanomechanics Inc., for their assistance with the implementation of in situ nanoindentation.

Supplementary material

11661_2018_4872_MOESM1_ESM.docx (797 kb)
Supplementary material 1 (DOCX 796 kb)
11661_2018_4872_MOESM2_ESM.avi (11.4 mb)
Supplementary material 2 (AVI 11646 kb)
11661_2018_4872_MOESM3_ESM.avi (14.2 mb)
Supplementary material 3 (AVI 14505 kb)


  1. 1.
    I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia: J. Mater. Sci., 1991, vol. 26, pp. 1137–56.CrossRefGoogle Scholar
  2. 2.
    N. Chawla and Y.-L. Shen: Adv. Eng. Mater., 2001, vol. 3, pp. 357–70.CrossRefGoogle Scholar
  3. 3.
    A. Mortensen and J. Llorca: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 243–70.CrossRefGoogle Scholar
  4. 4.
    J.W.C. Dunlop and P. Fratzl: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 1–24.CrossRefGoogle Scholar
  5. 5.
    R.O. Ritchie: Nat. Mater., 2011, vol. 10, pp. 817–22.CrossRefGoogle Scholar
  6. 6.
    G. Mayer: Science, 2005, vol. 310, pp. 1144–47.CrossRefGoogle Scholar
  7. 7.
    S. Kamat, X. Su, R. Ballarini, and A.H. Heuer: Nature, 2000, vol. 405, pp. 1036–40.CrossRefGoogle Scholar
  8. 8.
    H. Gao, B. Ji, I.L. Jager, E. Arzt, and P. Fratzl: Proc. Natl. Acad. Sci., 2003, vol. 100, pp. 5597–5600.CrossRefGoogle Scholar
  9. 9.
    Z. Li, Q. Guo, Z. Li, G. Fan, D.B. Xiong, Y. Su, J. Zhang, and D. Zhang: Nano Lett., 2015, vol. 15, pp. 8077–83.CrossRefGoogle Scholar
  10. 10.
    S. Feng, Q. Guo, Z. Li, G. Fan, Z. Li, D.B. Xiong, Y. Su, Z. Tan, J. Zhang, and D. Zhang: Acta Mater., 2017, vol. 125, pp. 98–108.CrossRefGoogle Scholar
  11. 11.
    Z. Li, G. Fan, Z. Tan, Q. Guo, D. Xiong, Y. Su, Z. Li, and D. Zhang: Nanotechnology, 2014, vol. 25, p. 325601.CrossRefGoogle Scholar
  12. 12.
    Y. Hu, Q. Guo, L. Zhao, Z. Li, G. Fan, Z. Li, D.-B. Xiong, Y. Su, and D. Zhang: Scripta Mater., 2018, vol. 146, pp. 236–40.CrossRefGoogle Scholar
  13. 13.
    X.W. Gu, C.N. Loynachan, Z. Wu, Y.W. Zhang, D.J. Srolovitz, and J.R. Greer: Nano Lett., 2012, vol. 12, pp. 6385–92.CrossRefGoogle Scholar
  14. 14.
    D. Jang and J.R. Greer: Scripta Mater., 2011, vol. 64, pp. 77–80.CrossRefGoogle Scholar
  15. 15.
    Q. Guo and J.R. Greer: Scripta Mater., 2012, vol. 66, pp. 272–75.Google Scholar
  16. 16.
    P. Landau, Q. Guo, P. Hosemann, Y. Wang, and J.R. Greer: Mater. Sci. Eng. A, 2014, vol. 612, pp. 316–25.CrossRefGoogle Scholar
  17. 17.
    C. Lee, X. Wei, J.W. Kysar, and J. Hone: Science, 2008, vol. 321, pp. 385–88.CrossRefGoogle Scholar
  18. 18.
    Z. Li, L. Zhao, Q. Guo, Z. Li, G. Fan, C. Guo, and D. Zhang: Scripta Mater., 2017, vol. 131, pp. 67–71.CrossRefGoogle Scholar
  19. 19.
    A.R. Ranjbartoreh, B. Wang, X. Shen, and G. Wang: J. Appl. Phys., 2011, vol. 109, p. 014306.CrossRefGoogle Scholar
  20. 20.
    C. Cao, M. Daly, B. Chen, J.Y. Howe, C.V. Singh, T. Filleter, and Y. Sun: Nano Lett., 2015, vol. 15, pp. 6528–34.CrossRefGoogle Scholar
  21. 21.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff: Nature, 2007, vol. 448, pp. 457–60.CrossRefGoogle Scholar
  22. 22.
    C. Gómez-navarro, M. Burghard, and K. Kern: Nano Lett., 2008, vol. 8, pp. 2045–49.CrossRefGoogle Scholar
  23. 23.
    J.Y. Kim, D. Jang, and J.R. Greer: Acta Mater., 2010, vol. 58, pp. 2355–63.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Xidan Fu
    • 1
  • Zan Li
    • 1
    Email author
  • Qiang Guo
    • 1
    Email author
  • Genlian Fan
    • 1
  • Zhiqiang Li
    • 1
  • Ding-Bang Xiong
    • 1
  • Zhanqiu Tan
    • 1
  • Yishi Su
    • 1
  • Shmuel Osovski
    • 2
  • Di Zhang
    • 1
  1. 1.State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Faculty of Mechanical EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations