Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5636–5645 | Cite as

Effect of Aluminum on Borocarbides and Temper Softening Resistance of High-Boron High-Speed Steel

  • Xiangyi RenEmail author
  • Hanguang FuEmail author
  • Jiandong Xing
  • Shuli Tang


The effects of aluminum content on the morphology of eutectic borocarbide and temper softening resistance of high-boron high-speed steel with 2.0 wt pct B-0.4 wt pct C-6.0 wt pct Cr-4.0 wt pct Mo-x wt pct Al-1.0 wt pct Si-1.0 wt pct V-0.5 wt pct Mn (x = 0.0, 1.0, 1.5, 2.0) have been investigated in the present work. The experimental results indicate that aluminum not only promotes the refining and nodulizing of borocarbide, but also improves the red-hardness of the alloy. The as-cast microstructure of high-boron high-speed steel (with different aluminum contents) consists of matrix α-Fe, eutectic borocarbide M2(B,C), and boron-cementite M3(B,C) (M = Fe, Cr, Mo, V, Mn). Borocarbide presents a continuous network structure in the microstructure of alloy without aluminum addition. With increasing aluminum content, borocarbide is spheroidized, and its size decreases. Furthermore, the variation in aluminum content barely affects the phase type. The hardness testing results of heat-treated samples at 1050 °C, 1100 °C, and 1150 °C reveal that the quenching temperature for obtaining the martensite matrix rises with an increase of aluminum content. However, the alloy matrix with 2.0 wt pct aluminum cannot transform to a martensite matrix through quenching, even at 1150 °C. The red-hardness is defined as the alloy hardness after four rounds of tempering at 600 °C for 1 hour. The hardness of alloy without aluminum addition reduces significantly after tempering, while the hardness of alloy with 1.0 wt pct aluminum exhibited the highest value. Moreover, no apparent change in borocarbide morphology occurred after tempering, indicating that the alloy microstructure renders good tempering stability.



This work was supported by the National Natural Science Foundation of China (51475005, 51641105), Natural Science Basic Research Plan in Shaanxi Province of China (2014JQ2-5028), Scientific Research Program Funded by Shaanxi Provincial Education Department (15JK1486), Science and Technology Project of Guangdong Province in China (2015B090926009), and Science and Technology Project of Guangzhou City in China (201604046009). This project was supported by the Open Research Subject of the Key Laboratory of Special Materials and Manufacturing Technology in the Sichuan Provincial Universities (szjj2016-089).


  1. 1.
    M. Andersson, R. Finnstrom and T. Nylén: Ironmaking Steelmaking, 2004, vol. 31, pp. 383-389.CrossRefGoogle Scholar
  2. 2.
    S. Spuzic, K. Strafford, C. Subramanian and G. Savage: Wear, 1994, vol. 176, pp. 261-271.CrossRefGoogle Scholar
  3. 3.
    W. Zamri, P. Kosashi, A. Tieu, Q. Zhu and H. Zhu: J. Mater. Pro. Technol., 2012, vol. 212, pp. 2597-2608.CrossRefGoogle Scholar
  4. 4.
    G. Wu and Y. Wang: Adv. Mater. Res., 2012, vol. 548, pp. 538-543.CrossRefGoogle Scholar
  5. 5.
    Y. Liu, Y. Jiang, R. Zhou and J. Feng: J. Alloys Compd., 2014, vol. 582, pp. 500-504.CrossRefGoogle Scholar
  6. 6.
    C. Kim, J. Park, S. Lee, Y. Kim, N. Kim and J. Yang: Metall. Mater. Trans. A, 2005, vol. 36, pp. 87-97.CrossRefGoogle Scholar
  7. 7.
    S. Wei, J. Zhu, L. Xu and R. Long: Mater. Design, 2006, vol. 27, pp. 58-63.CrossRefGoogle Scholar
  8. 8.
    Z. Lv, H. Fu, J. Xing and S. Ma: J. Alloys. Compd., 2016, vol. 662, pp. 54-62.CrossRefGoogle Scholar
  9. 9.
    H. Fu and Z. Jiang: Acta Met. Sini., 2006, vol. 42, pp. 545-548.Google Scholar
  10. 10.
    V. Astini, Y. Prasetyo and E. Baek: Met. Mater. Int., 2012, vol. 18, pp. 923-931.CrossRefGoogle Scholar
  11. 11.
    J. Kim, K. Ko, S. Noh, G. Kim and S. Kim: Wear, 2009, vol. 267, pp. 1415-1419.CrossRefGoogle Scholar
  12. 12.
    X. Song, H. Liu, H. Fu and J. Xing: Foundry, 2008, vol. 57, pp. 498-503.Google Scholar
  13. 13.
    H. Fu: Foundry, 2005, vol. 54, pp. 859-863.Google Scholar
  14. 14.
    S. Liu, Y. Cheng, R. Long, S. Wei and G. Zhang: Foundry Technol., 2007, vol. 28, pp. 1526-1530.Google Scholar
  15. 15.
    L. He, Y. Liu, J. Li and B. Li: Mater. Design, 2012, vol. 36, pp. 88-93.CrossRefGoogle Scholar
  16. 16.
    Z. Huang, J. Xing and C. Guo: Mater. Design, 2010, vol. 31, pp. 3084-3089.CrossRefGoogle Scholar
  17. 17.
    A. Rottger, J. Lentz and W. Theisen: Mater. Design, 2015, vol. 88, pp. 420-429.CrossRefGoogle Scholar
  18. 18.
    N. Yuksel and S. Sahin: Mater. Design, 2014, vol. 58 (6), pp. 491-498.CrossRefGoogle Scholar
  19. 19.
    R. Sundeev, A. Glezer, A. Menushenkov, A. Shalimova and O. Chernysheva: Mater. Design, 2017, vol. 135 (5), pp. 77-83.CrossRefGoogle Scholar
  20. 20.
    Y. Yi, J. Xing, M. Wan, L. Yu, Y. Lu and Y. Jian: Mater. Sci. Eng. A, 2017, vol. 708, pp. 274-284.CrossRefGoogle Scholar
  21. 21.
    J. Gu, H. Zhang, H. Fu and Y. Lei: Foundry Technol., 2011, vol. 32, pp. 1376-1379.Google Scholar
  22. 22.
    Z. Gui, W. Liang, Y. Liu and Y. Zhang: Mater. Design, 2014, vol. 60 (60), pp. 26-33.CrossRefGoogle Scholar
  23. 23.
    J. Kim, S. Hong, H. Park, Y. Kim and G. Park: Mater. Design, 2015, vol. 76, pp. 190-195.CrossRefGoogle Scholar
  24. 24.
    X. Zhou, F. Fang, Y. Tu, J. Jiang, H. Xu and W. Zhu: Acta Met. Sin., 2014, vol. 50 (7), pp. 769-776.Google Scholar
  25. 25.
    D. Yi, J. Xing, H. Fu, S. Ma and Z. Liu: Mater. Sci. Technol., 2010, vol. 26 (7), pp. 849-856.CrossRefGoogle Scholar
  26. 26.
    Y. Yang, H. Fu, Y. Lei, K. Wang, L. Zhu and L. Jang: J. Mater. Eng. Perform., 2016, vol. 25, pp. 409-420.CrossRefGoogle Scholar
  27. 27.
    D. Ma and Z. Ma: Heavy Cast. Forg., 2008, vol. 3, pp. 10-12.Google Scholar
  28. 28.
    Y. Yang, H. Fu, K. Wang, Y. Lei, L. Zhu and L. Jiang: Trans. Mater. Heat Treat., 2016, vol. 37 (7), pp. 48-54.Google Scholar
  29. 29.
    J. Cao, C. Xiang, L. Li, D. Chen, and C. Qin: Steel, 1999, vol. 20(4), pp. 19-21.Google Scholar
  30. 30.
    X. Zhi, J. Xing and Y. Gao: Mater. Character., 2008, vol. 59 (9), pp. 1221-1226.CrossRefGoogle Scholar
  31. 31.
    Z. Huang, J. Xing and Y. Gao: Rare Metal Mater. Eng., 2011, vol. 40 (2), pp. 244-247.Google Scholar
  32. 32.
    W. Pabst, C. Berthold, E. Gregorov and A. Acute: J. Eur. Ceram. Soc., 2006, vol. 26 (7), pp. 1121-1130.CrossRefGoogle Scholar
  33. 33.
    A. Rottger, S. Weber and W. Theisen: Mater. Sci. Eng. A, 2012, vol. 532, pp. 511-521.Google Scholar
  34. 34.
    X. Ren, H. Fu, J. Xing, Y. Yang and S. Tang: J. Mater. Res., 2017, vol. 32 (16), pp. 3078-3088.CrossRefGoogle Scholar
  35. 35.
    C. Guo and P. Kelly: Mater. Sci. Eng. A, 2003, vol. 352, pp. 40-45.CrossRefGoogle Scholar
  36. 36.
    Z. Yu, H. Fu, Y. Jiang, Q. Cen, Y. Lei, R. Zhou and H. Guo: Materialwiss Werkst, 2012, vol. 43 (12), pp. 1080-1085.CrossRefGoogle Scholar
  37. 37.
    S. Ma, J. Xing, H. Fu, Y. Gao and J. Zhang: Acta Mater., 2012, vol. 60, pp. 831-843.CrossRefGoogle Scholar
  38. 38.
    J. Gong, B. Yang, Y. Xiao and J. Xu: Mater. Sci. Eng. Powder Metall., 2013, vol. 18 (4), pp. 579-584.Google Scholar
  39. 39.
    R. Yang, L. Zhao, B. Wang and K. Chen: Transact. Mater. Heat Treat., 2009, vol. 30 (4), pp. 185-189.Google Scholar
  40. 40.
    J. Lentz, A. Rottger and W. Theisen: Acta Mater., 2016. vol. 119, pp. 80-91.CrossRefGoogle Scholar
  41. 41.
    X. Chen and Y. Li: Mater. Sci. Eng. A, 2010, vol. 528, pp. 770-775.CrossRefGoogle Scholar
  42. 42.
    S. Ma, W. Pan, J. Xing, S. Guo, H. Fu and P. Lyu: Mater. Character., 2017. vol. 132, pp. 1-9.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and EngineeringXi’an Jiaotong UniversityXi’anP.R. China
  2. 2.Research Institute of Advanced Materials Processing Technology, School of Materials Science and EngineeringBeijing University of TechnologyBeijingP.R. China

Personalised recommendations