Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5309–5322 | Cite as

Microstructural Degradation and the Effects on Creep Properties of a Hot Corrosion-Resistant Single-Crystal Ni-Based Superalloy During Long-Term Thermal Exposure

  • X. W. JiangEmail author
  • D. Wang
  • Di Wang
  • X. G. Liu
  • W. Zheng
  • Y. Wang
  • G. Xie
  • L. H. Lou


In the present study, the kinetics of microstructural degradation during long-term thermal exposure (LTTE) and the effects on creep deformation mechanisms of a hot corrosion-resistant single-crystal Ni-based superalloy with a low γ′ volume fraction and γ/γ′ lattice misfit were investigated in detail. The kinetic of γ′ coarsening in the experimental alloy conforms well to the Lifshitz–Slyozov–Wagner theory during LTTE at 900 °C up to 10,000 hours. The evolution of γ/γ′ lattice misfit during the LTTE was also investigated by a first attempt. The focused research emphasized on the influences of γ/γ′ lattice misfit evolution after the LTTE on the microstructural degradation, dislocation motion, and different creep mechanisms during high-temperature low-stress creep and high-temperature high-stress creep. The results show that the decreasing of the absolute values of γ/γ′ lattice misfit and change of γ′ size and morphology after the LTTE contribute to the weakening of barrier to the dislocation cutting process into γ′ precipitates during creep and the sharp reduction of stress-rupture lifetime at 950 °C/280 MPa after 1000 hours exposure. As the applied stress decreased to 230 MPa at 950 °C, the creep mechanisms change from the dislocation cutting through γ′ precipitates at high applied stress to the dislocation glide and climb around γ′ precipitates. The dislocation glide and climb by-pass deformation mechanism were not significantly influenced by the change of γ′ precipitates morphology and magnitude of γ/γ′ mismatch within 1000 hours thermal exposure, and the minimum creep rate and creep lifetime after 1000 hours thermal exposure were similar to that of the original heat-treated samples.



Present work was supported by the National Key Research and Development Program of China (2016YFB0701403) and the National Natural Science Foundation of China under Grant Nos. 51674235, 51771204 and 51631008. The authors are grateful for these supports.


  1. 1.
    [1] T.M. Pollock, S. Tin: J. Propul. Power., 2006, vol. 22, pp. 361-74.CrossRefGoogle Scholar
  2. 2.
    [2] M. Konter, M. Thumann: J. Mater. Process. Technol., 2001, vol. 117, pp. 386-90.CrossRefGoogle Scholar
  3. 3.
    R.C. Reed, J.J. Moverare, A. Sato, F. Karlsson, M. Hasselqvist: In Superalloys 2012, E. S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella and J. Telesman, eds., TMS, Warrendale, PA, 2012, pp. 197-204.CrossRefGoogle Scholar
  4. 4.
    I. Okada, T. Torigoe, K. Takahashi, D. Izutsu: In Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra and S. Walston, eds., TMS, Warrendale, PA, 2004, pp.707-12.CrossRefGoogle Scholar
  5. 5.
    [5] R.C. Reed: The Superalloys, Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  6. 6.
    [6] M.V. Nathal: Metall. Trans. A, 1987, vol. 18A, pp. 1961-70.CrossRefGoogle Scholar
  7. 7.
    T. Murakumo, Y. Koizumi, K. Kobayashi, H. Harada: In Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra and S. Walston, eds., TMS, Warrendale, PA, 2004, pp.189-95.Google Scholar
  8. 8.
    [8] T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada: Acta Mater., 2004, vol. 52, pp. 3737-44.CrossRefGoogle Scholar
  9. 9.
    A. Royer, P. Bastie: : In Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal T.M. Pollock, and D.A. Woodford, eds., TMS, Warrendale, PA, 1996, pp. 221-28.Google Scholar
  10. 10.
    A. Epishin, T. Link, U. Brückner, B. Fedelich, and P. Portella: In Superalloys, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra and S. Walston, eds., TMS, Warrendale, PA, 2004, pp.537-43.Google Scholar
  11. 11.
    T. Murakumo, Y. Koizumi, K. kobayashi and H. Harada: In Superalloys 2004, K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. reed, J. J. Scirra and S. Walston, eds., pp. 115-62.Google Scholar
  12. 12.
    X.W. Jiang, D. Wang, G. Xie, H. Li, L.H. Lou L, J. Zhang: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 6016-26.Google Scholar
  13. 13.
    [13] M.V. Acharya, G.E. Fuchs: Mater. Sci. Eng. A, 2004, vol. 381, pp. 143-53.CrossRefGoogle Scholar
  14. 14.
    [14] F. Pyczak, S. Neumeier, M. Göken: Mater. Sci. Eng. A, 2009, vol. 510-511, 295-300.CrossRefGoogle Scholar
  15. 15.
    [15] S. Socrate, D.M. Parks: Acta Metall Mater., 1993, vol. 41, pp. 2185-2209.CrossRefGoogle Scholar
  16. 16.
    [16] F. Diologent, P. Caron, T. D’Almeida, A. Jacques, P. Bastie: Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, vol. 200, pp. 346-51.CrossRefGoogle Scholar
  17. 17.
    [17] M. Fährmann, W. Hermann, E. Fährmann, A. Boegli, T.M. Pollock, and H.G. Sockel: Mater. Sci. Eng. A, 1999, vol. 260, pp. 212-21.CrossRefGoogle Scholar
  18. 18.
    T.M. Pollock and R.D. Field: in Dislocation in Solids, F.R.N. Nabarro and M.S. Duesbery, eds., Elsevier Science B.V., Amsterdam, Netherlands, 2002, vol. 11, pp. 547-618.Google Scholar
  19. 19.
    [19] L.J. Carroll, Q. Feng, J.F. Mansfield, and T.M. Pollock: Metall. Mater. Trans. A., 2006, vol. 37A, pp. 2927-38.CrossRefGoogle Scholar
  20. 20.
    [20] X.G. Wang, J.L. Liu, T. Jin, X.F. Sun, Z.Q. Hu, J.H. Do, B.G. Choi, I.S. Kim, C.Y. Jo: Mater Des., 2015, vol. 17, pp. 543-51.CrossRefGoogle Scholar
  21. 21.
    [21] J.X. Zhang, J.C. Wang, H. Harada, Y. Koizumi: Acta Mater., 2005, vol. 53, pp. 4623-33.CrossRefGoogle Scholar
  22. 22.
    [22] J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, T. Murakumo and H. Harada: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 1911-14.CrossRefGoogle Scholar
  23. 23.
    [23] J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, T. Murakumo, H. Harada, S. Masaki JR: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3741-46.CrossRefGoogle Scholar
  24. 24.
    [24] M. Aghaie-Khafri and S. Farahany: J. Mater. Eng. Perform., 2010, vol. 19, pp. 1065-70.CrossRefGoogle Scholar
  25. 25.
    X.W. Jiang, D. Wang, G. Xie, H. Li, L.H. Lou L, J. Zhang: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 6016-26.CrossRefGoogle Scholar
  26. 26.
    [26] X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, and H.Q. Ye: Metall. Mater. Trans. A., 2007, vol. 38A, pp. 3014-22.CrossRefGoogle Scholar
  27. 27.
    [27] J.L. Liu, T. Jin, J.J. Yu, X.F. Sun, H.R. Guan, Z.Q. Hu: Mater. Sci. Eng. A, 2010, vol. 527, pp. 890-97.CrossRefGoogle Scholar
  28. 28.
    [28] A. Ges, O. Fornaro, F. Palacio: J Mater Sci., 1997, vol. 32, pp. 3687-91.CrossRefGoogle Scholar
  29. 29.
    [29] M. Doi, T. Miyazaqui and T. Wakatsuki: Mater. Sci. Eng., 1984, vol. 67. pp. 247-53.CrossRefGoogle Scholar
  30. 30.
    [30] A. Baldan: J Mater Sci., 2002, vol. 37, pp. 2171-2202.CrossRefGoogle Scholar
  31. 31.
    [31] A. Baldan: J Mater Sci., 2002, vol. 37, pp. 2379-2405.CrossRefGoogle Scholar
  32. 32.
    [32] R.S. Moshtaghin, S. Asgari: Mater Des., 2003, vol. 24, pp. 325-30.CrossRefGoogle Scholar
  33. 33.
    [33] T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1-30.CrossRefGoogle Scholar
  34. 34.
    [34] H. Rouault-Rogez, M. Dupeux, and M. Ignat: Acta Metall. Mater., 1994, vol. 42, pp. 3137.CrossRefGoogle Scholar
  35. 35.
    [35] J.T. Guo, D. Ranucci, E. Picco, P. M. Strocchi: Metall. Trans. A, 1983, vol. 14, pp. 2329-35.CrossRefGoogle Scholar
  36. 36.
    [36] N. Matan, D.C. Cox, P. Cater, M.A. Rist, C.M.F. Rae, R.C. Reed: Acta Mater., 1999, vol. 47, pp.1549-63.CrossRefGoogle Scholar
  37. 37.
    [37] C.M.F. Rae, R.C. Reed: Acta Mater., 2007, vol. 55, pp. 1067-81.CrossRefGoogle Scholar
  38. 38.
    [38] J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada: Acta Mater., 2003, vol. 51, pp.5073-81.CrossRefGoogle Scholar
  39. 39.
    [39] I. Lifshitz and V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35.CrossRefGoogle Scholar
  40. 40.
    [40] C. Wagner: Z. Elect., 1961, vol. 65, pp. 581.Google Scholar
  41. 41.
    [41] R.A. Mackay, M.V. Nathal: Acta Metall. Mater., 1996, vol.38, pp. 1993-2005.Google Scholar
  42. 42.
    [42] H.B. Long, H. Wei, Y.N. Liu, S.C. Mao, J.X. Zhang, S.S. Xiang, Y.H. Chen, W.M. Gui, Q. Li, Z. Zhang, X.D. Han: Acta Mater., 2016, vol. 120, pp. 95-107.CrossRefGoogle Scholar
  43. 43.
    [43] T. Grosdidier, A. Hazotte, A. Simon: Mater. Sci. Eng. A, 1998, vol. 256, pp. 183-96.CrossRefGoogle Scholar
  44. 44.
    [44] R. Sharghi-Moshtaghin, S. Asgari: J. Mater. Process. Technol., 2004, vol. 147, pp. 343-50.CrossRefGoogle Scholar
  45. 45.
    [45] R.A. Stevens, P.E.J. Flewitt: Mater. Sci. Eng., 1979, vol. 37, pp. 237-47.CrossRefGoogle Scholar
  46. 46.
    [46] J. Wang, L.Z. Zhou, L.Y. Sheng, J.T. Guo: Mater. Des., 2012, vol. 39, pp. 55-62.CrossRefGoogle Scholar
  47. 47.
    [48] H.E. Collins: Metall. Trans., 1974, vol. 5, pp. 189-204.Google Scholar
  48. 48.
    [49] E. Lvova: J. Mater. Eng. Perform., 2007, vol. 16, pp, 254-64.CrossRefGoogle Scholar
  49. 49.
    [50] C. Yuan, J.T. Guo, H. C. Yang and S.H. Wang: Scripta Mater., 1998, vol. 39, pp. 991-97.CrossRefGoogle Scholar
  50. 50.
    [51] L.Z. He, Q. Zheng, X.F. Sun, H.R. Guan, Z.Q. Hu, A.K. Tieu, C. Lu, and H.T. Zhu: Metall. Mater. Trans. A., 2005, vol. 36A, pp. 2385-91.CrossRefGoogle Scholar
  51. 51.
    [52] N. Matan, D.C. Cox, CMF Rae, RC Reed: Acta Mater., 1999, vol. 47, pp.2031-45.CrossRefGoogle Scholar
  52. 52.
    G.L. Erickson: in Superalloys 1996, R.D. Kissinger et al., eds., TMS, Warrendale, PA, 1996, p. 45.Google Scholar
  53. 53.
    [54] D. Mukherji, H. Gabrisch, W. Chen, H.J. Fecht, and R.P. Wahi: Acta Mater., 1997, vol. 45, pp. 3143-54.CrossRefGoogle Scholar
  54. 54.
    [55] D.W. MacLachlan, D.M. Knowles: Metall. Mater. Trans. A., 2000, vol. 31A, pp. 1401-11.CrossRefGoogle Scholar
  55. 55.
    [56] J.X. Zhang, H. Harada, Y. Koizumi, T. Kobayashi: J Mater Sci., 2010, vol. 45, pp. 523-32.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • X. W. Jiang
    • 1
    Email author
  • D. Wang
    • 1
  • Di Wang
    • 1
  • X. G. Liu
    • 1
  • W. Zheng
    • 1
  • Y. Wang
    • 1
  • G. Xie
    • 1
  • L. H. Lou
    • 1
  1. 1.Superalloys Division, Institute of Metal ResearchChinese Academy of SciencesShenyangPeople’s Republic of China

Personalised recommendations