Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5561–5573 | Cite as

Effect of Process Atmosphere Dew Point and Tin Addition on Oxide Morphology and Growth for a Medium-Mn Third Generation Advanced Steel During Intercritical Annealing

  • Maedeh Pourmajidian
  • Brian Langelier
  • Joseph R. McDermidEmail author


The combined effects of process atmosphere oxygen partial pressure, annealing time, and a 0.05 wt pct Sn addition on the selective oxidation of a model 0.1C-6Mn-2Si third generation advanced high-strength steel (3G-AHSS) composition were investigated. External and internal oxidation of both steels were observed after intercritical annealing at 963 K (690 °C) for holding times of 60 to 600 seconds under all process atmosphere dew points explored—i.e., 223 K, 243 K, and 278 K (− 50 °C, − 30 °C, and + 5 °C). The external MnO morphology was changed from compact and continuous film-like nodules to a fine and discrete globular morphology, with thinner external oxides, for the Sn-added steel. Cross-sectional TEM analysis revealed that the Sn addition also resulted in significant refinement of the internal oxide network. Kinetic studies showed that both the external and internal oxidation followed a parabolic rate law, where the Sn addition to the steel chemistry resulted in lower external and internal oxidation rates. 3D atom probe tomography of the external oxide/steel interface showed that Sn was segregated to the interface with enrichment levels ten times the bulk value, which was concluded to be responsible for the observed morphological changes. The resultant refined external oxide structure is expected to have significant benefits with respect to reactive wetting by the continuous galvanizing bath.



This work was financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Stelco Inc. through the NSERC/Stelco Industrial Research Chair in Advanced Coated Steels (Grant IRCPJ 305921-12). U.S. Steel Research is gratefully acknowledged for their provision of the steels used in this study. The authors would like to thank John Thomson and Ray Fullerton of the McMaster Steel Research Centre for their technical support with the galvanizing simulations, Travis Casagrande and Dr. Andreas Korinek of the Canadian Centre for Electron Microscopy (CCEM) for technical and scientific assistance with FIB work and electron energy loss spectroscopy, and Dr. Li Sun at ArcelorMittal Dofasco for aiding with the XPS analyses.


  1. 1.
    [1] D.W. Suh and S.J. Kim: Scripta Mater. 2017, vol. 126, pp. 63–7.CrossRefGoogle Scholar
  2. 2.
    [2] M. J. Merwin: Mater. Sci. Forum, 2007, vol. 539, pp. 4327–32.CrossRefGoogle Scholar
  3. 3.
    [3] M.J. Merwin: Iron & Steel Technol., 2008, vol. 5, pp. 66–84.Google Scholar
  4. 4.
    [4] R. L. Miller: Metall. Mater. Trans. B, 1972, vol. 3, pp. 905–12.CrossRefGoogle Scholar
  5. 5.
    K.M.H. Bhadhon, J.R. McDermid, and F.E. Goodwin: The 10th International Conference on Zinc and Zinc Alloy Coated Steel Sheet (Galvatech 2015), 2015, pp. 936–43.Google Scholar
  6. 6.
    [6] J. Mahieu, S. Claessens, and B.C. De Cooman: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2905–8.CrossRefGoogle Scholar
  7. 7.
    [7] J. Maki, J. Mahieu, B.C. De Cooman, and S. Claessens: Mater. Sci. Technol., 2003, vol. 19, pp. 125–31.CrossRefGoogle Scholar
  8. 8.
    [8] J. Mahieu, B.C. De Cooman, J. Maki, and S. Claessens: Iron Steelmaker, 2002, vol. 29, pp. 29–34.CrossRefGoogle Scholar
  9. 9.
    [9] E.M. Bellhouse, and J.R. McDermid: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2753–68.CrossRefGoogle Scholar
  10. 10.
    [10] E.M. Bellhouse, and J.R. McDermid: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2426–41.CrossRefGoogle Scholar
  11. 11.
    [11] E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1539–53.CrossRefGoogle Scholar
  12. 12.
    [12] L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim and B.C. De Cooman: Metall. Mater. Trans. A., 2013, 44A, pp. 362–71.CrossRefGoogle Scholar
  13. 13.
    [13] Y.F. Gong, H.S. Kim and B.C. De Cooman: ISIJ Int., 2009, vol. 49, pp. 557–63.CrossRefGoogle Scholar
  14. 14.
    [14] Y.F. Gong, H.S. Kim and B.C. De Cooman: ISIJ Int., 2008, vol. 48, pp. 1745–51.CrossRefGoogle Scholar
  15. 15.
    [15] K.R. Jo, L. Cho, J.H. Oh, M.S. Kim, K.C. Kang and B.C. De Cooman: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3635–41.CrossRefGoogle Scholar
  16. 16.
    [16] M. Blumenau, M. Norden, F. Friedel and K. Peters: Surf. Coat. Technol., 2011, vol. 206, pp. 559–67.CrossRefGoogle Scholar
  17. 17.
    [17] Y.F. Gong and B.C. De Cooman: ISIJ Int., 2011, vol. 51, pp. 630–7.CrossRefGoogle Scholar
  18. 18.
    [18] A. Ruck, D. Monceau, and H.J. Grabke: Steel Res., 1996, vol. 67, pp. 240–6.CrossRefGoogle Scholar
  19. 19.
    [19] G. Lyudkovsky: IEEE Trans. Magn., 1986, vol. 22, pp.508–46.CrossRefGoogle Scholar
  20. 20.
    [20] L.Cho, M.S. Kim, Y.H. Kim and B.C. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4484–98.CrossRefGoogle Scholar
  21. 21.
    [21] L. Cho, E.J. Seo, G.S. Jung, D.W. Suh and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1705–19.CrossRefGoogle Scholar
  22. 22.
    [22] J. Oh, L. Cho, M. Kim, K. Kang and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5474–86.CrossRefGoogle Scholar
  23. 23.
    [23] Z.T. Zhang, I.R. Sohn, F.S. Pettit, G.H. Meier and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 567–84.CrossRefGoogle Scholar
  24. 24.
    [24] Y.Y. Zhang, Y.Y. Zhang, F.H. Yang and Z.T. Zhang: J. Iron. Steel Res. Int., 2013, vol. 20, pp. 39–56.CrossRefGoogle Scholar
  25. 25.
    [25] E.D. Hondores and M.P. Seah: Int. Met. Rev., 1977, vol. 22, pp. 262–301.Google Scholar
  26. 26.
    [26] M. Seah: J. Catal, 1979, vol. 57, pp. 450–7.CrossRefGoogle Scholar
  27. 27.
    [27] D. Melford: Philos. Trans. R. Soc. A, 1980, vol. 295, pp. 89–103.CrossRefGoogle Scholar
  28. 28.
    [28] D.K. Matlock, J.G. Speer, E. De Moor and P.J. Gibbs: JESTECH, 2012, vol. 15, pp. 1–12.Google Scholar
  29. 29.
    [29] B.C. De Cooman, P. Gibbs, S. Lee and D.K. Matlock: Metall. Mater. Trans. A, 2015, vol. 44A, pp. 2563–72.Google Scholar
  30. 30.
    [30] S. Lee, K. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 46A, pp. 2356–63.Google Scholar
  31. 31.
    [31] S. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 45A, pp. 709–16.Google Scholar
  32. 32.
    [32] R. Khondker, A. Mertens and J.R. McDermid: Mater. Sci. Eng. A, 2007, vol. 463, pp. 157–65.CrossRefGoogle Scholar
  33. 33.
    [33] E.M. Bellhouse and J.R. McDermid: Mater. Sci. Eng. A, 2008, vol. 491, pp. 39–46.CrossRefGoogle Scholar
  34. 34.
    [34] R. Kavitha and J.R. McDermid: Surf. Coat. Technol., 2012, vol. 212, pp. 152–8.CrossRefGoogle Scholar
  35. 35.
    [35] R. Sagl, A. Jarosik, D. Stifter and G. Angeli: Corros. Sci., 2013, vol. 70, pp. 268–75.CrossRefGoogle Scholar
  36. 36.
    Morris: FREED Thermodynamic Database, v7.8.1, 2013.Google Scholar
  37. 37.
    [37] K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131–9.CrossRefGoogle Scholar
  38. 38.
    [38] B.R. Strohmeier and D.M. Hercules: J. Phys. Chem., 1984, vol. 88, pp. 4922–9.CrossRefGoogle Scholar
  39. 39.
    [39] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson and R.St.C. Smart: Appl. Surf. Sci., 2011, vol. 257, pp. 2717–30.CrossRefGoogle Scholar
  40. 40.
    [40] A. Aoki: Jpn. J. Appl. Phys., 1976, vol. 15, pp. 305–11.CrossRefGoogle Scholar
  41. 41.
    N. Birks, G.H. Meier and F.S. Pettit: Introduction to the High-temperature Oxidation of Metals. 2nd ed., Cambridge University Press: Cambridge, 2006, p. 338.CrossRefGoogle Scholar
  42. 42.
    [42] J.H. Rask, B.A. Miner and P.R. Buseck: Ultramicroscopy, 1987, vol. 21, pp. 321–6.CrossRefGoogle Scholar
  43. 43.
    P.L. Potapov, K. Jorissen and D. Schryvers: Phys. Rev. B, 2004, vol. 70, pp. 1–10.CrossRefGoogle Scholar
  44. 44.
    [44] H.K. Schmid and W. Mader: Micron, 2006, vol. 37, pp. 426–32.CrossRefGoogle Scholar
  45. 45.
    [45] H. Tan, J. Verbeeck, A. Abakumov and G. Van Tendeloo: Ultramicroscopy, 2012, vol. 116, pp. 24–33.CrossRefGoogle Scholar
  46. 46.
    [46] A.P. Grosvenor, E.M. Bellhouse, A. Korinek, M. Bugnet and J.R. McDermid: Appl. Surf. Sci., 2016, vol. 379, pp. 242–8.CrossRefGoogle Scholar
  47. 47.
    [47] K. Kimoto, T. Sekiguchi and T. Aoyama: J. Electron. Microsc., 1997, vol. 46, pp. 369–74.CrossRefGoogle Scholar
  48. 48.
    Gatan, Accessed 12 June 2017.
  49. 49.
    [49] E.A. Marquis, B.P. Geiser, T.J. Prosa and D.J. Larson: J. Microsc., 2011, vol. 24, pp. 225–33.CrossRefGoogle Scholar
  50. 50.
    [50] X.S. Li, S.I. Baek, C.S. Oh, S.J. Kim and Y.W. Kim: Scripta Mater., 2007, vol. 57, pp. 113–16.CrossRefGoogle Scholar
  51. 51.
    [51] Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita and S. Yamaguchi: ISIJ Int., 2009, vol. 49, pp. 564–73.CrossRefGoogle Scholar
  52. 52.
    [52] D. Huin, P. Flauder and J.B. Leblond: Oxid. Met., 2005, vol. 64, pp. 131–67.CrossRefGoogle Scholar
  53. 53.
    [53] J. Takada, K. Kashiwagi and M. Adachi: J. Mater. Sci., 1984, vol. 19, pp. 3451–3458.CrossRefGoogle Scholar
  54. 54.
    [54] H. Liu, W. Shi, Y. He and L. Li: Surf. Interface Anal., 2010, vol. 42, pp. 1685–9.CrossRefGoogle Scholar
  55. 55.
    [55] M. Auinger, V.G. Praig, B. Linder and H. Danninger: Corros. Sci., 2015, vol. 96, pp. 133–43.CrossRefGoogle Scholar
  56. 56.
    [56] M. Pourmajidian and J.R. McDermid: Mat. Met. Trans. A, 2018, vol. 49A, pp. 1795–1808.Google Scholar
  57. 57.
    [57] M. Pourmajidian and J.R. McDermid: ISIJ Int., 2018, Scholar
  58. 58.
    [58] C. Wagner: Zh. Elektrochem, 1959, vol. 63, pp. 772–82.Google Scholar
  59. 59.
    [59] S. Alibeigi, R. Kavitha, R.J. Meguerian and J.R. McDermid: Acta. Mater., 2011, vol. 59, pp. 3537–49.CrossRefGoogle Scholar
  60. 60.
    [60] R. Sagl, A. Jarosik, G. Angeli, T. Haunschmid, G. Hesser and D. Stifter: Acta Mater., 2014, vol. 72, pp. 192–9.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Maedeh Pourmajidian
    • 1
  • Brian Langelier
    • 2
  • Joseph R. McDermid
    • 1
    Email author
  1. 1.McMaster Steel Research CentreMcMaster UniversityHamiltonCanada
  2. 2.Canadian Centre for Electron MicroscopyMcMaster UniversityHamiltonCanada

Personalised recommendations