Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5546–5560 | Cite as

Selective Oxidation of a C-2Mn-1.3Si (Wt Pct) Advanced High-Strength Steel During Continuous Galvanizing Heat Treatments

  • G. Seyed Mousavi
  • J. R. McDermidEmail author


The influence of oxygen partial pressure and annealing time on the selective oxidation of a Fe-0.1C-2Mn-1.3Si (wt pct) advanced high-strength steel during intercritical annealing was investigated. The steel was intercritically annealed at 1093 K (820 °C) for annealing times in the range of 60 to 600 seconds in a N2-5 vol pct H2 gas atmosphere with dew points ranging from 223 K to 278 K (− 50 °C to + 5 °C). The morphology, thickness, and chemistry of the oxides were determined as a function of process atmosphere oxygen partial pressure and annealing time by means of SEM, XPS, and TEM. It was found that for the 223 K (− 50 °C) dew point atmosphere, a compact, film-like external oxide comprising MnSiO3, Mn2SiO4, and SiO2 and nodule-like MnO oxides covered the surface. On the other hand, for the 278 K (+ 5 °C) dew point atmosphere, MnSiO3, Mn2SiO4, and MnO nodule/plate-like external oxides were formed, while Si was oxidized internally. Longer annealing times resulted in increasing either the thickness of the external oxide layer or the depth of internal oxidation. A comparison between the predictions of the Wagner internal-to-external transition model found good agreement between the experimental results for Mn and Si in ferrite.



The authors would like to thank Stelco Inc. and the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support of this work through the NSERC/Stelco Industrial Research Chair in Advanced Coated Steels. The authors also thank John Thomson and Ray Fullerton from the McMaster Steel Research Centre for assistance with the galvanizing simulations, Travis Casagrande and Andreas Korinek from the Canadian Centre for Electron Microscopy for assistance with sample analysis, and Li Sun (ArcelorMittal Dofasco) for assistance with XPS.


  1. 1.
    C.M. Tamarelli: The Evolving Use of Advanced High-Strength Steels for Automotive Applications, Michigan, 2011.Google Scholar
  2. 2.
    [2] H. Liu, F. Li, W. Shi, S. Swaminathan, Y. He, M. Rohwerder, and L. Li: Surf. Coatings Technol., 2012, vol. 206, pp. 3428–36.CrossRefGoogle Scholar
  3. 3.
    [3] S-K. Lee, J-S. Kim, N. Kang, and K-M. Cho: Met. Mater. Int., 2012, vol. 18, pp. 951–56.CrossRefGoogle Scholar
  4. 4.
    [4] S-K. Lee, J-S. Kim, J-W. Choi, N. Kang, and K-M. Cho: Met. Mater. Int., 2011, vol. 17, pp. 251–57.CrossRefGoogle Scholar
  5. 5.
    [5] X. Vanden Eynde, J.P. Servais, and M. Lamberigts: Surf. Interface Anal., 2003, vol. 35, pp. 1004–14.CrossRefGoogle Scholar
  6. 6.
    [6] E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1539–53.CrossRefGoogle Scholar
  7. 7.
    S. Alibeigi: McMaster University, 2014.Google Scholar
  8. 8.
    [8] L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim, and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 362–71.CrossRefGoogle Scholar
  9. 9.
    [9] L. Cho, G.S. Jung, and B.C. De Cooman: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5158–72.CrossRefGoogle Scholar
  10. 10.
    E.M. Bellhouse: McMaster University, 2010.Google Scholar
  11. 11.
    [11] J. Mahieu, S. Claessens, and B.C. De Cooman: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2905–8.CrossRefGoogle Scholar
  12. 12.
    I. Parezanović: Rheinisch-Westfälische Technische Hochschule Aachen, 2005.Google Scholar
  13. 13.
    [13] E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2426–41.CrossRefGoogle Scholar
  14. 14.
    [14] M. Norden, M. Blumenau, T. Wuttke, and K-J. Peters: Appl. Surf. Sci., 2013, vol. 271, pp. 19–31.CrossRefGoogle Scholar
  15. 15.
    [15] E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1460–73.CrossRefGoogle Scholar
  16. 16.
    [16] G.M. Song, T. Vystavel, N. van der Pers, J.T.M De Hosson, and W.G. Sloof: Acta Mater., 2012, vol. 60, pp. 2973–81.CrossRefGoogle Scholar
  17. 17.
    [17] E.M. Bellhouse and J.R. McDermid: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2753–68.CrossRefGoogle Scholar
  18. 18.
    [18] R. Khondker, A. Mertens, and J.R. McDermid: Mater. Sci. Eng. A, 2007, vol. 463, pp. 157–65.CrossRefGoogle Scholar
  19. 19.
    [19] R. Kavitha and J.R. McDermid: Surf. Coatings Technol., 2012, vol. 212, pp. 152–58.CrossRefGoogle Scholar
  20. 20.
    [20] R. Sagl, A. Jarosik, D. Stifter, and G. Angeli: Corros. Sci., 2013, vol. 70, pp. 268–75.CrossRefGoogle Scholar
  21. 21.
    Y.F. Gong, T.J. Song, H.S. Kim, J.H. Kwak, and B.C. De Cooman: in Asia-Pacific Galvaniz. Conf., Seoul, 2009.Google Scholar
  22. 22.
    [22] M. Blumenau, M. Norden, F. Friedel, and K. Peters: Surf. Coat. Technol., 2011, vol. 205, pp. 3319–27.CrossRefGoogle Scholar
  23. 23.
    [23] C. Wagner: Zh. Elektrochem., 1959, vol. 63, pp. 772–82.Google Scholar
  24. 24.
    [24] R.A. Rapp: Corrosion, 1965, vol. 21, pp. 382–401.CrossRefGoogle Scholar
  25. 25.
    [25] V.A. Lashgari, C. Kwakernaak, and W.G. Sloof: Oxid. Met., 2014, vol. 81, pp. 435–51.CrossRefGoogle Scholar
  26. 26.
    J.M. Mataigne, M. Lamberigts, and V. Leroy: in Development of Annealing Sheet Steels, R. Pradhan and I. Gupta, eds., Minerals, Metals & Materials Society, Pittsburgh, 1992, pp. 511–28.Google Scholar
  27. 27.
    [27] H. Liu, Y. He, S. Swaminathan, M. Rohwerder, and L. Li: Surf. Coatings Technol., 2011, vol. 206, pp. 1237–43.CrossRefGoogle Scholar
  28. 28.
    T.L. Baum, R.J. Fruehan, and S. Sridhar: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2007, vol. 38, pp. 287–97.CrossRefGoogle Scholar
  29. 29.
    [29] A.P. Grosvenor, E.M. Bellhouse, A. Korinek, M. Bugnet, and J.R. McDermid: Appl. Surf. Sci., 2016, vol. 379, pp. 242–48.CrossRefGoogle Scholar
  30. 30.
    [30] B.R. Strohmeier and D.M. Hercules: J. Phys. Chem., 1984, vol. 88, pp. 4929–92.CrossRefGoogle Scholar
  31. 31.
    [31] J. Finster: Surf. Interface Anal., 1988, vol. 12, pp. 309–14.CrossRefGoogle Scholar
  32. 32.
    [32] L. Laffont and P. Gibot: Mater. Charact., 2010, vol. 61, pp. 1268–73.CrossRefGoogle Scholar
  33. 33.
    [33] H.K. Schmid and W. Mader: Micron, 2006, vol. 37, pp. 426–32.CrossRefGoogle Scholar
  34. 34.
    [34] C.C. Ahnn and O.L. Krivanek: EELS Atlas, Gatan Inc., Warrendale, 1983.Google Scholar
  35. 35.
    G. Seyed Mousavi and J.R. McDermid: in Int. Conf. Zinc Zinc Alloy Coat. Steel Sheet, 2017, pp. 485–92.Google Scholar
  36. 36.
    [36] Y.F. Gong, H.S. Kim, and B.C. De Cooman: ISIJ Int., 2009, vol. 49, pp. 557–63.CrossRefGoogle Scholar
  37. 37.
    [37] M. Blumenau, M. Norden, F. Friedel, and K. Peters: Surf. Coatings Technol., 2011, vol. 206, pp. 559–67.CrossRefGoogle Scholar
  38. 38.
    [38] V.A. Lashgari, G. Zimbitas, C. Kwakernaak, and W.G. Sloof: Oxid. Met., 2014, vol. 82, pp. 249–69.CrossRefGoogle Scholar
  39. 39.
    [39] Y.F. Gong, H.S. Kim, and B.C. De Cooman: ISIJ Int., 2008, vol. 48, pp. 1745–51.CrossRefGoogle Scholar
  40. 40.
    [40] D. Huin, P. Flauder, and J.B. Leblond: Oxid. Met., 2005, vol. 64, pp. 131–67.CrossRefGoogle Scholar
  41. 41.
    [41] Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita, and S. Yamaguchi: ISIJ Int., 2009, vol. 49, pp. 564–73.CrossRefGoogle Scholar
  42. 42.
    [42] A.R. Marder: Prog. Mater. Sci., 2000, vol. 45, pp. 191–271.CrossRefGoogle Scholar
  43. 43.
    [43] M. Guttmann: Mater. Sci. Forum, 1994, vol. 155–156, pp. 527–48.CrossRefGoogle Scholar
  44. 44.
    [44] J. Maki, J. Mahieu, B.C. De Cooman, and S. Claessens: Mater. Sci. Technol., 2003, vol. 19, pp. 125–31.CrossRefGoogle Scholar
  45. 45.
    [45] Y. Takada, S. Shimada, J. Lee, M. Kurosaki, and T. Tanaka: ISIJ Int., 2009, vol. 49, pp. 100–104.CrossRefGoogle Scholar
  46. 46.
    [46] Y. Kim, M. Shin, C. Tang, and J. Lee: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 872–75.CrossRefGoogle Scholar
  47. 47.
    [47] S. Alibeigi, R. Kavitha, R.J. Meguerian, and J.R. McDermid: Acta Mater., 2011, vol. 59, pp. 3537–49.CrossRefGoogle Scholar
  48. 48.
    [48] M. Pourmajidian and J.R. Mcdermid: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1795–1808.Google Scholar
  49. 49.
    C. Horvath, C. Matthew Enloe, J. Coryell, J.P. Singh, and General Motors Co.: in Proc. Int. Symp. New Dev. Adv. High-Strength Sheet Steels, Warrendale, 2017, pp. 1–10.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Steel Research CentreMcMaster UniversityHamiltonCanada

Personalised recommendations