Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5524–5534 | Cite as

Study of the Heat Transfer Behavior and Naturally Deposited Films in Strip Casting by Using Droplet Solidification Technique

  • Wanlin Wang
  • Chenyang Zhu
  • Cheng Lu
  • Jie Yu
  • Lejun Zhou
Article

Abstract

Oxide films that naturally deposit on the surface of the twin-roll mold during strip casting greatly influence the heat transfer from molten steel pool to the mold wall, which further affect the quality of casting product. In this study, a droplet solidification technique has been developed to simulate the initial process of solidification and film deposition during strip casting process. The results suggest that the maximum heat flux increases firstly (to 5201.5 kW/m2 for industrial pure Fe and to 4242.1 kW/m2 for stainless steel) and then decreases (to 4700.3 kW/m2 for industrial pure Fe and to 2037.8 kW/m2 for stainless steel) with the repeat of dropping tests. Furthermore, the roughness and thickness of the films formed on the surface increase with the successive addition of the solidifying material on the prior film. The compositions of the films are detected mainly as oxides containing O, Fe, Si, Mn, S, and Cu for the industrial pure Fe sample and they are O, Si, S, Mn, Cr, and Cu for the stainless steel sample. The deposited film with a thickness (54 μm for industrial pure Fe and 82 μm for stainless steel) and a roughness (24.5 nm for industrial pure Fe and 36.6 nm for stainless steel) allows a better wetting behavior between the molten steel and mold surface, resulting in an increase of actual contact area, and an enhancement of nucleation rate, which then in turn promote the interfacial heat transfer during the initial solidification of molten steel.

Notes

Acknowledgments

The financial support from the National Science Foundation of China (51661130154, U1760202) and Newton Advanced Fellowship (NA150320) is greatly acknowledged.

References

  1. 1.
    [1] P.G.Q. Netto, R.P. Tavares, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2001, vol. 41, pp. 1340-49.CrossRefGoogle Scholar
  2. 2.
    [2] T. Loulou, E.A. Artyukhin, and J.P. Bardon: Int. J. Heat Mass Tran., 1999, vol. 42, pp. 2129-42.CrossRefGoogle Scholar
  3. 3.
    [3] W. Zhang, Y. Yu, Y. Fang, and J. Li: J. Shanghai Jiaotong Univ. (Sci.), 2011, vol. 16, pp. 65-70.CrossRefGoogle Scholar
  4. 4.
    P. Nolli: Doctoral Thesis, Carnegie Mellon University, 2007.Google Scholar
  5. 5.
    [5] P. Nolli, and A.W. Cramb: ISIJ Int., 2007, vol. 47, pp. 1284-93.CrossRefGoogle Scholar
  6. 6.
    [6] L. Strezov, J. Herbertson and G.R. Belton: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1023-30.CrossRefGoogle Scholar
  7. 7.
    H. Todoroki, R. Lert-A-Rom, A.W. Cramb, I. Jimbo, and T. Suzuki: Electr. Furn. Conf. Proc., 1996.Google Scholar
  8. 8.
    [8] L. Strezov, and J. Herbertson: ISIJ Int., 1998, vol. 38, pp. 959-66.CrossRefGoogle Scholar
  9. 9.
    H. Todoroki, R. Lert-A-Rom, T. Suzuki, and A.W. Cramb: Alex Mclean Symp., 1998.Google Scholar
  10. 10.
    H. Todoroki, R. Lert-A-Rom, T. Suzuki, and A.W. Cramb: Steelmak. Conf. Proc., 1997.Google Scholar
  11. 11.
    [11] M.J. Ha, J. Choi, S. Jeong, H. Moon, S. Lee, and T. Kang: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1487-97.CrossRefGoogle Scholar
  12. 12.
    [12] T. Evans and L. Strezov: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1081-89.CrossRefGoogle Scholar
  13. 13.
    N. Phinichka: Doctoral Thesis, Carnegie Mellon University, 2001.Google Scholar
  14. 14.
    [14] P. Nolli, and A.W. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 56-65.CrossRefGoogle Scholar
  15. 15.
    [15] J. Beck and K. Woodbury: Meas. Sci. Technol., 1998, vol. 9, pp. 839-47.CrossRefGoogle Scholar
  16. 16.
    [16] H. Zhang, W. Wang, D. Zhou, F. Ma, B. Lu, and L. Zhou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1038-47.CrossRefGoogle Scholar
  17. 17.
    [17] D. Zhou, W. Wang, H. Zhang, F. Ma, K. Chen, and L. Zhou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1048-56.CrossRefGoogle Scholar
  18. 18.
    [18] H. Zhang, and W. Wang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 779-93.CrossRefGoogle Scholar
  19. 19.
    [19] K.N. Prabhu, B.N. Ravishankar: Mater. Sci. Eng. A, 2003, vol. 360, pp. 293-98.CrossRefGoogle Scholar
  20. 20.
    [20] D. Bouchard, S. Leboeuf, J.P. Nadeau, R.I.L. Guthrie and M. Isac: J. Mater. Sci., 2009, vol. 44, pp. 1923-33.CrossRefGoogle Scholar
  21. 21.
    [21] R.I.P. Guthrie, M. Isac, J.S. Kim and R.P. Tavares: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1031-47.CrossRefGoogle Scholar
  22. 22.
    Jayananda and K.N. Prabhu: T. Indian I. Metals, 2012, vol. 65, pp. 539-43.CrossRefGoogle Scholar
  23. 23.
    [23] G.X. Wang and E.F. Matthys: Int. J. Heat Mass Tran., 2002, vol. 45, pp. 4967-81.CrossRefGoogle Scholar
  24. 24.
    M.L.S. Zappulla and B.G. Thomas: TMS 2017 146th Annu. Meet. Exhib. Suppl. Proc., 2017.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Wanlin Wang
    • 1
    • 2
  • Chenyang Zhu
    • 1
    • 2
  • Cheng Lu
    • 1
    • 2
  • Jie Yu
    • 1
    • 2
  • Lejun Zhou
    • 1
    • 2
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.National Center for International Research of Clean MetallurgyCentral South UniversityChangshaChina

Personalised recommendations