Advertisement

Improvement of Creep Resistance at 950 °C and 400 MPa in Ru-Containing Single-Crystal Superalloys with a High Level of Co Addition

  • J. J. Huo
  • Q. Y. Shi
  • S. Tin
  • L. F. Li
  • Q. Feng
Article
  • 74 Downloads

Abstract

Microstructural features, including γ′ volume fraction and size, γ-γ′ lattice misfit, γ channel width, and dislocation substructure, are known to significantly influence the creep performance in Ni-base single-crystal superalloys. In this study, the microstructural characteristics of Ru-containing single-crystal superalloys with different levels of Co, Mo, and Ru additions were quantitatively investigated after ruptured and interrupted creep tests conducted at 1223 K (950 °C) and 400 MPa. The creep lifetime was slightly increased with the high level of Co addition and significantly increased with the coadditions of Mo and Ru. A minor effect of Co content on the γ channel width and γ′ volume fraction was found in experimental alloys. The alloy with high levels of Mo and Ru additions was determined to possess a more negative γ-γ′ lattice misfit, and a high density of stacking faults (SFs) was formed in the γ channels during creep. The combined effects of the SFs in the γ matrix serving as the barriers to dislocation movement, as well as the dense interfacial dislocation networks preventing dislocation to shear the γ′ phase, were considered as the main mechanism responsible for the improvement of creep resistance. Results from this study are helpful to understand the effect of microstructural features on creep performance and contribute to the knowledge of physical metallurgy in Ru-containing single-crystal superalloys.

Notes

Acknowledgments

The authors thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time and help during the experiments. The financial support provided by the National Key Research and Development Program of China (Project No. 2016YFB0701403) and the National Natural Science Foundation of China (Grant Nos. 51271015 and 51631008) are gratefully acknowledged.

References

  1. 1.
    R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, United Kingdom, 2006.CrossRefGoogle Scholar
  2. 2.
    T.M. Pollock and S. Tin: J. Propul. Power, 2006, vol. 22, pp. 361–74.CrossRefGoogle Scholar
  3. 3.
    S Walston, A Cetel, R MacKay, K O’Hara, D Duhl, and R Dreshfield: Superalloys 2004, Champion, PA, 2004, KA Green, TM Pollock, H Harada, TE Howson, RC Reed, JJ Schirra, and S Walston, eds., TMS, Warrendale, PA, 2004, pp. 15–24.CrossRefGoogle Scholar
  4. 4.
    GL Erickson: Superalloys 1996, Champion, PA, 1996, RD Kissinger, DJ Deye, DL Anton, AD Cetel, MV Nathal, TM Pollock, and DA Woodford, eds., TMS, Warrendale, PA, 1996, pp. 35–44.Google Scholar
  5. 5.
    R Bürgel, J Grossmann, O Lusebrink, H Mughrabi, F Pyczak, RF Singer, and A Volek: Superalloys 2004, KA Green, TM Pollock, H Harada, TE Howson, RC Reed, JJ Schirra, and S Walston, eds., Champion, PA, 2004, TMS, Warrendale, PA, 2004, pp. 25–34.CrossRefGoogle Scholar
  6. 6.
    M. Nathal and L. Ebert: Metall. Trans. A, 1985, vol. 16A, pp. 1863–70.CrossRefGoogle Scholar
  7. 7.
    L.J. Carroll, Q. Feng, and T.M. Pollock: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1290–1307.CrossRefGoogle Scholar
  8. 8.
    RA Hobbs, GJ Brewster, CMF Rae, and S Tin: Superalloys 2008, RC Reed, KA Green, P Caron, TP Gabb, MG Fahrmann, and ES Huron, eds., Champion, PA, 2008, TMS, Warrendale, PA, pp. 171–80.Google Scholar
  9. 9.
    TM Pollock and RD Field: in Dislocations in Solids, FRN Nabarro and MS Duesbery, eds., Elsevier, New York, NY, 2002, pp. 547–618.Google Scholar
  10. 10.
    S. Ma, L. Carroll, and T.M. Pollock: Acta Mater., 2007, vol. 55, pp. 5802–12.CrossRefGoogle Scholar
  11. 11.
    Y. Yuan, Y. Gu, C. Cui, T. Osada, Z. Zhong, T. Tetsui, T. Yokokawa, and H. Harada: J. Mater. Res., 2011, vol. 26, pp. 2833–37.CrossRefGoogle Scholar
  12. 12.
    F. Xue, H.J. Zhou, Q.Y. Shi, X.H. Chen, H. Chang, M.L. Wang, and Q. Feng: Scripta Mater., 2015, vol. 97, pp. 37–40.CrossRefGoogle Scholar
  13. 13.
    M.S. Titus, A. Mottura, G. Babu Viswanathan, A. Suzuki, M.J. Mills, and T.M. Pollock: Acta Mater., 2015, vol. 89, pp. 423–37.CrossRefGoogle Scholar
  14. 14.
    JX Zhang, T Murakumo, H Harada, Y Koizumi, and T Kobayashi: Superalloys 2004, KA Green, TM Pollock, H Harada, TE Howson, RC Reed, JJ Schirra, and S Walston, eds., Champion, PA, 2004, TMS, Warrendale, PA, pp. 189–95.CrossRefGoogle Scholar
  15. 15.
    Q. Shi, J. Huo, Y. Zheng, and Q. Feng: Mater. Sci. Eng. A, 2018, vol. 725, pp. 148–59.CrossRefGoogle Scholar
  16. 16.
    J. Zhang, J.G. Li, T. Jin, X.F. Sun, and Z.Q. Hu: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3051–56.CrossRefGoogle Scholar
  17. 17.
    T. Tiearney and N.J. Grant: Metall. Trans. A, 1982, vol. 13A, pp. 1827–36.CrossRefGoogle Scholar
  18. 18.
    F. Pettinari, J. Douin, G. Saada, P. Caron, A. Coujou, and N. Clement: Mater. Sci. Eng. A, 2002, vol. 325, pp. 511–19.CrossRefGoogle Scholar
  19. 19.
    R.A. Hobbs, L. Zhang, C.M.F. Rae, and S. Tin: Mater. Sci. Eng. A, 2008, vol. 489, pp. 65–76.CrossRefGoogle Scholar
  20. 20.
    T.Y. Yang, W. Wen, and G.Z. Yin: Nucl. Sci. Technol., 2015, vol. 26, pp. 1–5.Google Scholar
  21. 21.
    A. Heckl, S. Neumeier, M. Göken, and R.F. Singer: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3435–44.CrossRefGoogle Scholar
  22. 22.
    R.A. MacKay, T.P. Gabb, A. Garg, R.B. Rogers, and M.V. Nathal: Mater. Charact., 2012, vol. 70, pp. 83–100.CrossRefGoogle Scholar
  23. 23.
    R.A. MacKay, T.P. Gabb, and M.V. Nathal: Mater. Sci. Eng. A, 2013, vol. 582, pp. 397–408.CrossRefGoogle Scholar
  24. 24.
    T. Murakumo, T. Kobayashi, Y. Koizumi, and H. Harada: Acta Mater., 2004, vol. 52, pp. 3737–44.CrossRefGoogle Scholar
  25. 25.
    S Neumeier, F Pyczak, and M Göken: Superalloys 2008, RC Reed, KA Green, P Caron, TP Gabb, MG Fahrmann, ES Huron, and SA Woodard, eds., Champion, PA, 2008, TMS, Warrendale, PA, 2008, pp. 109–19.Google Scholar
  26. 26.
    N. Tsuno, K. Kakehi, C.M.F. Rae, and R. Hashizume: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 269–72.CrossRefGoogle Scholar
  27. 27.
    J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, and S. Masaki: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3741–46.CrossRefGoogle Scholar
  28. 28.
    T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, pp. 1–30.CrossRefGoogle Scholar
  29. 29.
    L.J. Carroll, Q. Feng, J.F. Mansfield, and T.M. Pollock: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2927–38.CrossRefGoogle Scholar
  30. 30.
    J.X. Zhang, J.C. Wang, H. Harada, and Y. Koizumi: Acta Mater., 2005, vol. 53, pp. 4623–33.CrossRefGoogle Scholar
  31. 31.
    J.X. Zhang, T. Murakumo, Y. Koizumi, and H. Harada: J. Mater. Sci., 2003, vol. 38, pp. 4883–88.CrossRefGoogle Scholar
  32. 32.
    A.C. Yeh, A. Sato, T. Kobayashi, and H. Harada: Mater. Sci. Eng. A, 2008, vol. 490, pp. 445–51.CrossRefGoogle Scholar
  33. 33.
    O. Boualy, N. Clément, and M. Benyoucef: J. Mater. Sci., 2018, vol. 53, pp. 2892–2900.CrossRefGoogle Scholar
  34. 34.
    W.R. Johnson, C.R. Barrett, and W.D. Nix: Metall. Trans., 1972, vol. 3, pp. 963–69.CrossRefGoogle Scholar
  35. 35.
    C. Cui, C. Tian, Y. Zhou, T. Jin, and X. Sun: Superalloys 2012, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, and E.S. Huron, eds., Champion, PA, 2008, TMS, Warrendale, PA, 2012, pp. 715–22.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • J. J. Huo
    • 1
    • 2
  • Q. Y. Shi
    • 1
    • 3
  • S. Tin
    • 4
  • L. F. Li
    • 1
  • Q. Feng
    • 1
    • 5
  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and TechnologyBeijing, BeijingChina
  2. 2.China Nuclear Power Engineering Co., LtdBeijingChina
  3. 3.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA
  4. 4.Illinois Institute of TechnologyChicagoUSA
  5. 5.Beijing Key Laboratory of Special Melting and Reparation of High-end Metal MaterialsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations