Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5661–5670 | Cite as

Effect of the Mass Fraction of Ceramic Particles on the Porosity of Wear-Resistant Composites Fabricated by Combustion Synthesis

  • Guilin Sun
  • Dingdong Fan
  • Sufen TaoEmail author


Combustion synthesis was employed to fabricate a wear-resistant composite using reactions between Ti, Al, Fe3O4, B4C, and CrO3 powders on the steel plate. CaF2 was used to improve the fluidity and decrease the melting temperature of Al2O3. A large number of holes were found in the top of the composite with different contents of ceramic particles. To elucidate the relationship between the mass fraction of ceramic particles and porosity, the adiabatic temperatures of different combustion systems were calculated. The porosity and size distribution of the holes of samples with different ceramic particle contents were studied, and the distributions and compositions of the ceramic particles were analyzed. The compositions surrounding and inside the holes were studied, and the hardness of the composite was also tested. The results show that the formation of holes is associated with the vaporization of Al and Cr. The porosity increases with an increase in the ceramic particle contents which is the combined effect of the decreasing adiabatic temperature, the increasing nucleation rate, the increasing ceramic particle sizes, the increasing viscosity of the metal, and the wetting angle between the liquid and solid phase, while the composition of ceramic particles has little effect. The hardness values of all composites exceed 60 HRC.



This work was financially supported by the National Natural Science Foundation of China No. 51471002 and Science and Technology Planning Project of Guangdong Province No. 2016B090931005. One of the authors (Sufen Tao) would like to extend her most sincere gratitude to associate professor Yunjin Xia and professor Jie Li. We are also very grateful to Dr. Zengchao Yang and Jing Zhang for their valuable discussions.


  1. 1.
    E. Pagounis, V.K. Lindroos: Mater. Sci. Eng. A, 1998, vol. 246, pp. 221-234.CrossRefGoogle Scholar
  2. 2.
    E. Pagounis, V.K. Lindroos, M. Talvitie: Mater. Sci. Eng. A, 1996, vol. 27, pp. 4171-4181.Google Scholar
  3. 3.
    S.C. Tjong, K.C. Lau: Compos. Sci. Technol., 2000, vol. 60, pp. 1141-1146.CrossRefGoogle Scholar
  4. 4.
    C. Raghunath, M.S. Bhat, P.K. Rohatgi: Scripta Metall. Mater., 1995, vol. 32, pp. 577-582.CrossRefGoogle Scholar
  5. 5.
    Ö.N. Doğan, J.A. Hawk: Scripta Metall. Mater., 1995, vol. 33, pp. 953-958.CrossRefGoogle Scholar
  6. 6.
    C.C. Degnan, P.H. Shipway: Wear, 2002, vol. 252, pp. 832-841.CrossRefGoogle Scholar
  7. 7.
    C.C. Degnan, P.H. Shipway: Metall. Mater. Trans. A., 2002, vol. 33, pp. 2973-2983.CrossRefGoogle Scholar
  8. 8.
    I.W.M. Brown, W.R. Owers: Curr. Appl. Phys., 2004, vol. 4, pp. 171-174.CrossRefGoogle Scholar
  9. 9.
    B.S. Terry, O.S. Chinyamakobvu: J. Mater. Sci. Lett., 1991, vol. 10, pp. 628-629.CrossRefGoogle Scholar
  10. 10.
    Y. Chen: Scripta Mater., 1997, vol. 1997, pp. 989-993.CrossRefGoogle Scholar
  11. 11.
    A. Saidi, A. Chrysanthou, J.V. Wood J V, J.L.F. Kellie: J. Mater. Sci., 1994, vol. 29, pp. 4993-4998.CrossRefGoogle Scholar
  12. 12.
    M.J. Capaldi, A. Saidi, J.V. Wood: ISIJ Int., 1997, vol. 37, pp. 188-193.CrossRefGoogle Scholar
  13. 13.
    A. Saidi, A. Chrysanthou, J.V. Wood, J.L.F. Kellie: Ceram. Int., 1997, vol. 23, pp. 185-189.CrossRefGoogle Scholar
  14. 14.
    Q. Fan, H. Chai, Z. Jin: J. Mater Sci., 1999, vol. 34, pp. 115-122.CrossRefGoogle Scholar
  15. 15.
    Q. Fan, H. Chai, Z. Jin: J. Mater. Sci., 2001, vol. 36, pp. 5559-5563.CrossRefGoogle Scholar
  16. 16.
    T.K. Bandyopadhyay, S. Chatterjee, K. Das: J. Mater Sci., 2004, vol. 39, pp. 5735-5742.CrossRefGoogle Scholar
  17. 17.
    K. Das, T.K. Bandyopadhyay, S. Das: J. Mater. Sci., 2002, vol. 37, pp. 3881-3892.CrossRefGoogle Scholar
  18. 18.
    R.J. Li: Ceramic-metal composites(In Chinese), 2nd ed., Metallurgical Industry Press, Beijing, 2004, pp. 242-50.Google Scholar
  19. 19.
    L. Contreras, X. Turrillas, G.B.M. Vaughan, Å. Kvick, M.A. Rodŕiguez: Acta Mater., 2004, vol. 52, pp. 4783-4790.CrossRefGoogle Scholar
  20. 20.
    AG Merzhanov, IP Borovinskaya (2008) Int. J. Self-Propag. High Temp. Synth. 17: 242-265.CrossRefGoogle Scholar
  21. 21.
    A. Varma, A.S. Rogachev, A.S. Mukasyan, S. Hwang: Adv. Chem. Eng., 1998, vol. 24, pp. 179-226.Google Scholar
  22. 22.
    G. Liu, J. Li, K. Chen: Int. J. Refract. Met. H., 2013, vol. 39, pp. 90-102.CrossRefGoogle Scholar
  23. 23.
    D. Ye and J. Hu (Eds): Handbook of Thermodynamic Data of Inorganic Substances(In Chinese), 2nd ed., Metallurgy Industry Press, Beijing, 2002, pp. 842–45.Google Scholar
  24. 24.
    X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q. Zhang, C. Uhera: Nat. Commun., 2014, vol. 5, pp. 1-7.Google Scholar
  25. 25.
    B. AlMangour, D. Grzesiak, T. Borkar, J.M. Yang: Mater. Design, 2018, vol. 138, pp. 119-128.CrossRefGoogle Scholar
  26. 26.
    B. AlMangour, D. Grzesiak, J.M. Yang: Powder Technol., 2018, vol. 326, pp. 467-478.CrossRefGoogle Scholar
  27. 27.
    B. AlMangour, D. Grzesiak, J.M. Yang: J Alloy Compd., 2017, vol. 706, pp. 409-418.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Metallurgical EngineeringAnhui University of TechnologyAnhuiP.R. China
  2. 2.Key Laboratory of Metallurgical Emission Reduction & Resources RecyclingAnhui University of Technology, Ministry of EducationAnhuiP.R. China

Personalised recommendations