Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5695–5704 | Cite as

Surface Properties and Erosion–Corrosion Behavior of Nanostructured Pure Titanium in Simulated Body Fluid

  • Osama M. IrfanEmail author
  • Fahad A. Al-Mufadi
  • F. Djavanroodi


Titanium and its alloys are used in several industries, especially in medical and dental applications. In the present study, the surface properties of nanostructured commercially pure titanium (CP-Ti) and its erosion–corrosion (E–C) behavior in simulated body fluid were studied. Equal-channel angular pressing (ECAP) was performed at a high temperature (400 °C) to produce nanostructured grain samples of CP-Ti. Then, the effects of ECAP passes on the E–C resistance under various conditions were investigated via weight loss measurements. Optical microscopy and transmission electron microscopy observations were performed to investigate the microstructural changes of the material. The surface roughness of the CP-Ti samples was evaluated using an optical profiling system. Mathematical equations of the modified Finnie model were employed for the analytical analysis of the E–C behavior. Additionally, computational fluid dynamics was utilized to model the E–C behavior of CP-Ti. Overall, the results showed that the ECAP process improved the E–C resistance of CP-Ti. A difference of 12 pct was observed between the experimental and numerical results of E–C resistance, which is acceptable for practical applications



The authors would like to acknowledge the financial support received from King Abdul-Aziz City for Science and Technology (KACST) for this work under Grant No. 35-89. The authors also gratefully acknowledge the support provided by Engineering College, Qassim University.

Author Contributions

OMI and FD proposed the concept of this study; OMI, FD, and FAA conceived and designed the experiments; OMI and FAA performed the experiments; FAA and FD analyzed the data and interpreted the results; OMI wrote the paper; and FD reviewed the paper.

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    N. Khayatan, M. Hamid Ghasemi, and M. Abedini: Wear, 2017, vol. 380, pp. 154–62.CrossRefGoogle Scholar
  2. 2.
    Z. Kamdi, P.H. Shipway, K.T. Voisey, and A.J. Sturgeon: Wear, 2011, vol. 271, pp. 1264–72.CrossRefGoogle Scholar
  3. 3.
    S.S. Rajahram, T.J. Harvey, and R.J.K. Wood: Wear, 2009, vol. 267, pp. 244–54.CrossRefGoogle Scholar
  4. 4.
    B. Thirumaran, S. Natarajan, and S.P. Kumaresh: Adv. Mater., 2013, vol. 2, pp. 1–5.CrossRefGoogle Scholar
  5. 5.
    E.A. Nawale, A.A. Mohammed, and M. Sondus: Eng. Technol. J., 2013, vol. 31, pp. 254–64.Google Scholar
  6. 6.
    L. Niu and Y.F. Cheng: Corros. Eng., Sci. Technol., 2013, vol. 44, pp. 389–93.CrossRefGoogle Scholar
  7. 7.
    G.A. Zhang, L.Y. Xu, and Y.F. Cheng: Corros. Sci., 2009, vol. 51, pp. 283–90.CrossRefGoogle Scholar
  8. 8.
    L. Niu and Y.F. Cheng: J. Mater. Sci., 2007, vol. 42, pp. 8613–7.CrossRefGoogle Scholar
  9. 9.
    B. Aydin Baykal, and P.M. Singh: Corrosion 2017, 2017, NACE-2017-9158.Google Scholar
  10. 10.
    L. Zhen, J. Zhang, and J. Cheng: J. Failure Anal. Prev., 2017, vol. 17, pp. 1234–40.CrossRefGoogle Scholar
  11. 11.
    S.C. Chapra and R.P. Canale: Numerical Methods for Engineers, 7th ed., McGraw-Hill, New York, NY, 2014.Google Scholar
  12. 12.
    O.M. Irfan, A.A. El-Nasr, and F. Al-Mufadi: Int. J. Mech. Eng., 2014, vol. 3, pp. 15–24.Google Scholar
  13. 13.
    M.A. Islam and Z. Farhat: Wear, 2017, vol. 376, pp. 541-548.Google Scholar
  14. 14.
    H. Chen, L. Lan, M. Huang, X. Liang, Y. Zhao, and F. Tang: Int. J. Electrochem. Sci., 2017, vol. 12, pp. 11309–15.CrossRefGoogle Scholar
  15. 15.
    R. Barker, X. Hu, A. Neville, and S. Cushnaghan: Corrosion, 2013, vol. 69, pp. 1132–43.CrossRefGoogle Scholar
  16. 16.
    S.S. Rajahram, T.J. Harvey, and R.J.K. Wood: Tribol. Int., 2011, vol. 44, no. 3, pp. 232–240.CrossRefGoogle Scholar
  17. 17.
    X.Yaer, K. Shimizu, H. Matsumoto, T. Kitsudo, and T. Momono: Wear, 2008, vol. 264, nos. 11–2, pp. 947–57.CrossRefGoogle Scholar
  18. 18.
    Y. Liu and Y.F. Cheng: J. Mater. Eng. Perform., 2011, vol. 20, no. 2, pp. 271–5.CrossRefGoogle Scholar
  19. 19.
    J. Villanueva, L. Trino, J. Thomas, D. Bijukumar, D. Royhman, M. M. Stack, and M. T. Mathew: J. Bio- Tribo-Corros., 2017, doi: Scholar
  20. 20.
    S. Mantry, D. Behera, S.K. Mishra, D. Debasish, B.B. Jha, and B.K. Mishra: Tribol. Trans., 2013, vol. 56, no. 2, pp. 196–202.CrossRefGoogle Scholar
  21. 21.
    H. Luo, X.G. Li, C.F. Dong, and K. Xiao: Arabian J. Chem., 2017, vol. 10, pp. 90–4.CrossRefGoogle Scholar
  22. 22.
    G.C. Liang, X.Y. Peng, L.Y. Xu, and Y.F. Cheng: J. Mater. Eng. Perform., 2013, vol. 26, pp. 828–36.Google Scholar
  23. 23.
    Y. Yang and Y.F. Cheng: Wear, 2012, vol. 276, pp. 141–8.CrossRefGoogle Scholar
  24. 24.
    K.S. Suresh, M. Geetha, C. Richard, J. Landoulsi, H. Ramasawmy, S. Suwas, and R. Asokamani: Mater. Sci. Eng., 2012, vol. 32, pp. 763–71.CrossRefGoogle Scholar
  25. 25.
    S.R. Paital, A. Bhattacharya, M. Moncayo, Y.H. Ho, K. Mahdak, and S. Nag: Surf. Coat. Technol., 2012, vol. 206, pp. 2308–15.CrossRefGoogle Scholar
  26. 26.
    M. Long and H.J. Rack: Biomaterials, 1998, vol. 19, pp. 1621–39.CrossRefGoogle Scholar
  27. 27.
    T.M. Mohsin and H. Shahir: Int. J. Innovative Res. Sci., Eng. Technol., 2015, vol. 4, pp. 2700–4.CrossRefGoogle Scholar
  28. 28.
    A. Neville and B.A.B. McDougall: Wear, 2001, vol. 250, pp. 726–35.CrossRefGoogle Scholar
  29. 29.
    O.M. Irfan, F. Al-Mufadi, Y. Al-Shataif, and F. Djavanroodi: Appl. Sci., 2017, vol. 7, 1250, Scholar
  30. 30.
    A. Zhilyaev, N. Parkhimovich, G. Raab, V. Popov, and V. Danilenko: Rev. Adv. Mater. Sci., 2015, vol. 43, pp. 61–6.Google Scholar
  31. 31.
    D. Jeyasimman, K. Sivaprasad, S. Sivasankaran, R. Ponalagusamy, R. Narayanasamy, and V. Iyer: Adv. Powder Technol., 2015, vol. 26, pp. 139–48.CrossRefGoogle Scholar
  32. 32.
    Z. Hussain, F.A. Al-Mufadi, S. Subbarayan, and O.M. Irfan: Mater. Sci. Eng., A, 2018, vol. 712, pp. 772–9.CrossRefGoogle Scholar
  33. 33.
    R.Z. Valiev, I.V. Alexandrov, and M. Logos: J. Surf. Eng. Mater. Adv. Technol., 2015, vol. 5, pp. 6–14.Google Scholar
  34. 34.
    F. Al-Mufadi and F. Djavanroodi: Int. J. Chem. Mol. Nucl. Mat. Metallurg. Eng., 2014, vol. 8, pp. 30–6.Google Scholar
  35. 35.
    K. Hajizadeh, B. Eghbali, K. Topolski, and K.J. Kurzydlowski: Mater. Chem. Phys., 2014, vol. 143, pp. 1032–8.CrossRefGoogle Scholar
  36. 36.
    O. M. Irfan, S. M. S. Mukras, F. A. Al-Mufadi, and F. Djavanroodi: Metals (Basel, Switz.), 2017, 7(5), 155. Scholar
  37. 37.
    ASTM E92–04: ASTM Hardness Standards Reference Guide, ASTM International, West Conshohocken, PA, 2011.Google Scholar
  38. 38.
    ASTM G119: Standard Guide for Determining Synergism between Wear and Corrosion, 2009.Google Scholar
  39. 39.
    D.H. Shin, I. Kim, J. Kim, Y.S. Kim, and S.L. Semiatin: Acta Mater., 2003, vol. 51, pp. 983–96.CrossRefGoogle Scholar
  40. 40.
    X. Zhao, X. Yang, X. Liu, X. Wang, and T.G. Langdon: Mater. Sci. Eng., A, 2010, vol. 527, pp. 6335–9.CrossRefGoogle Scholar
  41. 41.
    K.A. Padmanabhan and S.B. Prabu: Mater. Sci. Forum, 2011, vol. 683, pp. 3–54.CrossRefGoogle Scholar
  42. 42.
    D.L. Zhang: Microporous Mesoporous Mater., 2011, vol. 146, pp. 88–96.CrossRefGoogle Scholar
  43. 43.
    E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, and H.H. Soliman: J. Mat. Proc. Technol., 2002, vol. 123, pp. 133–45.CrossRefGoogle Scholar
  44. 44.
    B. Ravisankar and J.K. Park: Trans. Indian Inst. Met., 2008, vol. 61, pp. 51–62.CrossRefGoogle Scholar
  45. 45.
    H.M. Ghasemi, M. Karimi, A. Pasha, and M. Abedini: Int. J. Mech. Mat. Eng., 2011, vol. 6, pp. 400–4.Google Scholar
  46. 46.
    H.C. Meng and K.C. Ludema: Wear, 1995, vols. 181–183, no. 2, pp. 443–57.CrossRefGoogle Scholar
  47. 47.
    I. Finnie: Wear, 1960, vol. 3, pp. 87–103.CrossRefGoogle Scholar
  48. 48.
    M. Popescu, A.I. Popovici, F.N. Petrescu, and N.N. Antonescu: Mater. Sci. Eng., 2017, vol. 174.Google Scholar
  49. 49.
    D. Song, A.-b. Ma, J.-h. Jiang, P.-h. Lin, and D.-h. Yang: Trans. Nonferrous Met. Soc. China, 2009, vol. 19, pp. 1065–70.CrossRefGoogle Scholar
  50. 50.
    J. Jiang, A. Ma, D. Song, D. Yang, J. Shi, K. Wang, L. Zhang, and J. Chen: J. Mater. Sci., 2012, vol. 47, pp. 7744–7750.CrossRefGoogle Scholar
  51. 51.
    J.G.A. Bitter: Wear, 1963, vol. 6, pp. 5–21.CrossRefGoogle Scholar
  52. 52.
    I.M. Hutchings: Wear, 1981, vol. 70, pp. 269–81.CrossRefGoogle Scholar
  53. 53.
    G.R. Johnson and W.H. Cook: J. Eng. Fract. Mech., 1985, vol. 21, pp. 31–48.CrossRefGoogle Scholar
  54. 54.
    G. Sundararajan and P.G. Shewmon: Wear, 1983, vol. 84, pp. 237–58.CrossRefGoogle Scholar
  55. 55.
    Y.-F. Wang and Z.-G. Yang: Wear, 2008, vol. 265, pp. 871–8.CrossRefGoogle Scholar
  56. 56.
    V. Hadavi, C.E. Moreno, and M. Papini: Wear, 2016, vols. 356–7, pp. 146–57.CrossRefGoogle Scholar
  57. 57.
    X. Chen, B.S. McLaury, and S.A. Shirazi: Comput. Fluids, 2004, vol. 33, pp. 1251–72.CrossRefGoogle Scholar
  58. 58.
    A. Forder, M. Thew, and D. Harrison: Wear, 1998, vol. 216, pp. 184–93.CrossRefGoogle Scholar
  59. 59.
    J.H. Neilson and A. Gilchrist: Wear, 1968, vol. 11, pp. 111–43.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Osama M. Irfan
    • 1
    • 2
    Email author
  • Fahad A. Al-Mufadi
    • 1
  • F. Djavanroodi
    • 3
    • 4
  1. 1.Departmentof Mechanical Engineering, College of EngineeringQassim UniversityBuraydahSaudi Arabia
  2. 2.Department of Production EngineeringBeni-Suef UniversityBeni SuefEgypt
  3. 3.Department of Mechanical EngineeringPrince Mohamed Bin Fahad UniversityKhobarSaudi Arabia
  4. 4.Department of Mechanical EngineeringImperial CollegeLondonUK

Personalised recommendations