Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 4615–4632 | Cite as

Chemistry and Properties of Medium-Mn Two-Stage TRIP Steels

  • Daniel M. FieldEmail author
  • Jingjing Qing
  • David C. Van Aken


Eight medium manganese steels ranging from 10 to 15 wt pct Mn have been produced with varying levels of aluminum, silicon, and carbon to create steels with varying TRIP (transformation-induced plasticity) character. Alloy chemistries were formulated to produce a range of intrinsic stacking fault energies (ISFE) from − 2.2 to 13.3 mJ/m2 when calculated at room temperature for an austenitic microstructure having the nominal alloy composition. Two-stage TRIP behavior was documented when the ISFE of the γ-austenite phase was 10.5 mJ/m2 or less, whereas an ISFE of 11.9 mJ/m2 or greater exhibited TWIP (twin-induced plasticity) with single-stage TRIP to form α-martensite. Properties were measured in both hot band (hot rolled) and batch annealed (hot rolled, cold rolled, and annealed) conditions. Hot band properties were influenced by the Si/Al ratio and this dependence was related to incomplete recovery during hot working for alloys with Si/Al ratios greater than one. Batch annealing was conducted at 873 K (600 °C) for 20 hours to produce ultrafine-grained microstructures with mean free slip distances less than 1 μm. Batch-annealed materials were found to exhibit a Hall–Petch dependence of the yield strength upon the mean free slip distance measured in the polyphase microstructure. Ultimate tensile strengths ranged from 1450 to 1060 MPa with total elongations of 27 to 43 pct. Tensile ductility was shown to be proportional to the sum of the products of volume fraction transformed times the volume change associated for each martensitic transformation. An empirical relationship based upon the nominal chemistry was derived for the ultimate tensile strength and elongation to failure for these batch-annealed steels. Two additional alloys were produced based upon the developed understanding of these two-stage TRIP steels and tensile strengths of 1150 MPa with 58 pct total elongation and 1400 MPa and 32 pct ductility were achieved.



This work was supported by the Peaslee Steel Manufacturing Research Center (PSMRC). Companies directly involved in this work include AK Steel, ArcelorMittal, Nucor Steel, and U. S. Steel. The FEI Helios NanoLab dual beam FIB was obtained with a Major Research Instrumentation Grant from the National Science Foundation under Contract DMR-0723128. The FEI Tecnai F20 scanning/transmission electron microscope was obtained through a major research instrumentation Grant from the National Science Foundation under Contract DMR-0922851. The authors also acknowledge the support of the Materials Research Center and in particular Dr. Clarissa Wisner for training on the SEM as well as Dr. Eric Bohannan for performing the XRD work. Special thanks are also extended to Dr. Narayan Pottore and Dr. Bernard Chukwulebe at ArcelorMittal, Todd Link from U.S. Steel, Eric Gallo at Nucor, and Dr. Luis Garza from AK Steel for their discussion and guidance on the engineering requirements for future 3rd generation advanced high-strength steels.


  1. 1.
    Q. Li, X. Huang, and W. Huang: Met Sci. Eng., 2016, vol. 662, pp. 129-35.CrossRefGoogle Scholar
  2. 2.
    E.J. Seo, L. C, Y. Estrin, and B.C. De Cooman: Acta Mater., 2016, vol. 113, pp. 124-39CrossRefGoogle Scholar
  3. 3.
    L. Cho, E.J. Seo, and B.C. De Cooman: Scripta Materialia, 2016, vol. 123, pp. 69-72CrossRefGoogle Scholar
  4. 4.
    T. Tschiyama, T. Inoe, J. Tobata, D. Akami, and S. Takaki: Scripta Mat. 2016, vol. 122, pp. 36-39CrossRefGoogle Scholar
  5. 5.
    D.-W. Suh, S.-J. Park, T.-H. Lee, C.-S. Oh, and S.-J. Kim: Met Trans A, 2010, vol. 41A, pp. 397–408Google Scholar
  6. 6.
    D.-W. Suh, J.-H. Ryu, M.-S. Joo, H.-S. Yang, H.K.D.H. Bhadeshia: Met Trans A, 2013, vol. 44A, pp. 286–93Google Scholar
  7. 7.
    J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao: Scripta Mat, 2010, vol. 63, pp. 815-18CrossRefGoogle Scholar
  8. 8.
    Z.H. Cai, H. Ding, R.D.Misra, and Z.Y. Ying: Acta Materialia, 2015, vol. 84, pp. 229-36CrossRefGoogle Scholar
  9. 9.
    R. Zhang, W.Q. Ca, Z.J. Peng, J. Shi, H. Dong, and C.X. Huang: Mater. Sci. & Eng. A, 2013, vol. 583, pp. 84-88CrossRefGoogle Scholar
  10. 10.
    R. Skolly, ArcelorMittal personal communication.Google Scholar
  11. 11.
    Y. Zhang, L. Wang, K. O. Findley, and J. Speer: Met Trans. A, 2017, vol. 48A, pp. 2140-49CrossRefGoogle Scholar
  12. 12.
    H. Luo, H. Dong, and M. Huang: Mater. & Design, 2015, vol. 83, pp.42-48CrossRefGoogle Scholar
  13. 13.
    S. Lee, W. Woo, and B.C. De Cooman: Met. Trans A, 2016, vol. 47A, pp. 2125-40CrossRefGoogle Scholar
  14. 14.
    G. Frommeyer, U. Brux, and P. Neumann: ISJ Inter. 2003, vol. 43, pp. 438-46CrossRefGoogle Scholar
  15. 15.
    L. Remy, and A. Pineau: Mater. Sci and Eng. 1976, vol. 26 pp. 123-32CrossRefGoogle Scholar
  16. 16.
    S. Allain, J.P. Chateau, and O. Bouaziz: Mater Sci and Eng. 2004, vol. 387, pp. 143-47CrossRefGoogle Scholar
  17. 17.
    T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim: Acta Mater. 2010, vol. 58, 3173-86CrossRefGoogle Scholar
  18. 18.
    H. Song, S.S. Sohn, J-H Kwak, B-J lee, and S. Lee: Met Trans A, 2016, vol. 47A, pp.2674-85CrossRefGoogle Scholar
  19. 19.
    O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: International Journal of Plasticity, 2000, vol. 16, pp. 1391-1409CrossRefGoogle Scholar
  20. 20.
    B.C. De Cooman, P. Gibbs, S. Lee, and D.K. Matlock: Met Trans A, 2013, vol. 44A, pp. 2563-72CrossRefGoogle Scholar
  21. 21.
    D.M. Field and D.C. Van Aken: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1152–66CrossRefGoogle Scholar
  22. 22.
    S.T. Pisarik, D.C. Van Aken, K. Limmer, and J.E. Medvedeva: AISTech 2014 Proceedings, 2014, vol. III, pp. 3013–23Google Scholar
  23. 23.
    S.K. Huang, Y.H. Wen, N.Li, J.Teng, S.Ding, Y.G. Xu: Mater Characterization vol.59, 2008, pp.681-87CrossRefGoogle Scholar
  24. 24.
    S. Shin, M. Kwon, W. Cho, I. S. Suh, and B.C. De Cooman: Mater. Sci. & Eng. 2017, vol. 683, pp. 187-94CrossRefGoogle Scholar
  25. 25.
    M.C. McGrath, D.C. Van Aken, N.I. Medvedeva, and J.E. Medvedeva: Metall. Mater. Trans. A, Vol. 44A, 2013, pp. 4634-43.CrossRefGoogle Scholar
  26. 26.
    X.-S. Yang, S. Sun, H.-H. Ruan, S.-Q. Shi, and T.-Y. Zhang: Acta Mater., 2017, vol. 136, pp. 347–54Google Scholar
  27. 27.
    D.C. Van Aken, S.T. Pisarik, and M.C. McGrath: Proceedings of the International Symposium on New Developments in Advanced High-Strength Steels, Vail, Colorado, 2013, pp. 119–29.Google Scholar
  28. 28.
    D. M. Field, and D.C. Van Aken: Met Trans A., (2016) Vol. 47A pp.1912-17CrossRefGoogle Scholar
  29. 29.
    N.I. Medvedeva, M.S. Park, D.C. Van Aken, and J.E. Medvedeva: J. Alloys Compd., Vol. 582, 2014, pp. 475–82Google Scholar
  30. 30.
    K.R. Limmer, J.E. Medvedeva, D.C. Van Aken and N.I. Medvedeva: Comput. Mater. Sci., 2015, vol. 99, pp. 253–55CrossRefGoogle Scholar
  31. 31.
    S.T. Pisarik and D.C. Van Aken: Met Trans A., Vol. 47A 2016 pp1009-1018CrossRefGoogle Scholar
  32. 32.
    D.M. Field, D.S. Baker, and D.C. Van Aken: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2150–63CrossRefGoogle Scholar
  33. 33.
    P.P. Suikkanen, V.T.E. Lang, M.C.Somani, D.A. Prter, and L.P. Karjalainen: ISIJ International, 2012, vol. 52, pp. 471-76CrossRefGoogle Scholar
  34. 34.
    Z, Li-Juan, W. Di, and Z. Xian-ming: Jour. Iron and Steel research international, 2007, vol. 14, pp. 61-65Google Scholar
  35. 35.
    L.J. Zhu, D. Wu, X.M. Zhao: Acta Metall. 2008 vol. 21, pp. 163-68CrossRefGoogle Scholar
  36. 36.
    M.C. Somani, L.P. Karjalainenm, D.A. Porter, and R.A. Morgridge: Proceedings of International Conference on Thermomechanical Processing Mechanics: Microstructures and Controls, University of Sheffield, Sheffield GB, (2003), 436.Google Scholar
  37. 37.
    S.F. Medina, and J. E. Mancilla: ISIJ Int. 1996, vol. 36, pp.1036-1070CrossRefGoogle Scholar
  38. 38.
    S.F. Medina, and A. Quispe: ISIJ Int. 2001, vol. 41, pp.774-80CrossRefGoogle Scholar
  39. 39.
    S-J. Lee, J. Kim, S.N. Kane, and B.C. De Cooman: Acta Materialia, 2011, vol. 59, pp.6809-19CrossRefGoogle Scholar
  40. 40.
    S.J. Lee, S.W. Lee, B.C. De Cooman: Int. J. Mater. Res., 2013, vol. 104, pp. 423–29.CrossRefGoogle Scholar
  41. 41.
    G.B. Olson, M. Cohen: Met Trans A Vol 7 1976 pp. 1897-1904Google Scholar
  42. 42.
    ASTM E 8/E 8M-08, Standard Test Methods for Tension Testing of Metallic MaterialsGoogle Scholar
  43. 43.
    S. Martin, C. Ullrich, D. Simek, U. Martin, and D. Rafaja: J. Appl. Crystallogr., 2011, vol. 44, pp. 779-87CrossRefGoogle Scholar
  44. 44.
    N. Stanford and D.P. Dunne: Acta Materialia, 2010, Vol. 58, pp.6752-62CrossRefGoogle Scholar
  45. 45.
    S. T. Pisarik, and D. C. Van Aken: Met Trans A., 2014, vol. 45, pp. 3173-78CrossRefGoogle Scholar
  46. 46.
    M. Papa Rao, V. Subramanya Sarma, and S. Sankaran: Met. Trans. A 2014, vol 45A pp. 5313–17Google Scholar
  47. 47.
    M. Papa Rao, V. Subramanya Sarma, and S. Sankaran: Mater. Sci. & Eng. A 2013, vol. 568 pp. 171–75Google Scholar
  48. 48.
    O. Saray, G. Purcek, I. Karaman, H. Maier: Met Trans A 2012, vol. 43A. 4320–30CrossRefGoogle Scholar
  49. 49.
    V.S.A. Challa, R.D.K. Misra, M.C. Comani and Z.D. Wang: Mater. Sci. & Eng 2016 vol. 661 pp.51–60CrossRefGoogle Scholar
  50. 50.
    Y. Son, Y.K. Lee, K.-T. Park, C. S. Lee, and D. H. Shin: Acta Mater. 2005, vol. 53, pp. 3125–34Google Scholar
  51. 51.
    M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Meter. 2011, vol. 59 pp. 658–70Google Scholar
  52. 52.
    D. H. Shin, and K-T. Park: Mater. Sci. & Eng. A 2005, vol. 410-411, pp. 299-302CrossRefGoogle Scholar
  53. 53.
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. & Eng. A 2010 vol. 527, pp. 2738-46CrossRefGoogle Scholar
  54. 54.
    R.D.K. Misra, P.K.C. Vankatsurya, M.C. Somani, and L.P. Karjalinen: Met Trans A, 2012, vol. 43A, pp. 5286-97CrossRefGoogle Scholar
  55. 55.
    P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Met Trans A, 2011, vol. 42A, pp. 3691-3701CrossRefGoogle Scholar
  56. 56.
    G. Dini, A. Najafizadeh, R. Ueji, and S.M. Monir-Vaghefi: Materials Letters, 2010, vol. 64, pp. 15-18CrossRefGoogle Scholar
  57. 57.
    S. Rajasekhara, P.J. Ferreira, L.P. Karjalainenm and A. Kyröläinen: Met Trans A. 2007, vol. 38A, pp. 1202–1210CrossRefGoogle Scholar
  58. 58.
    A. Rohatgi, K.S., Vecchio, and G.T. Gray III: Met. Trans. A, 2001, vol. 32A, pp. 135–45Google Scholar
  59. 59.
    D.J. Branagan, C.S. Parsons, T.V. Machrowicz, A.E. Frerichs, B.E. Meacham, S. Cheng, and A.V. Sergueeva 2016, Launch of a New Class of 3 rd Generation Cold Formable AHSS [PowerPoint slide 15 & 16]Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Daniel M. Field
    • 1
    Email author
  • Jingjing Qing
    • 1
  • David C. Van Aken
    • 1
  1. 1.Department of Materials Science and EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations