Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 4884–4894 | Cite as

Flow Behavior and Hot Workability of Nb-15Si-22Ti-5Cr-3Al-2.5Hf Alloy

  • Ye Tang
  • Xiping Guo
Article
  • 93 Downloads

Abstract

Constitutive models for flow behaviors of an arc-melted Nb-15Si-22Ti-5Cr-3Al-2.5Hf alloy at temperatures of 1350 °C to 1500 °C and strain rates of 0.001 to 0.1 s−1 have been successfully established during work hardening and dynamic softening stages, respectively, and relatively small average absolute relative errors of the predicted flow stresses are reached (7.7 pct for the work hardening stage and 5.7 pct for the dynamic softening stage). The hot processing map has also been established successfully for this Nb-Si-based ultrahigh temperature alloy. The favorable conditions for hot working of this alloy have been determined as 1350 °C to 1380 °C/0.001 to 0.003 s−1 and 1380 °C to 1440 °C/0.001 to 0.01 s−1. The deformed microstructures under different conditions have been explored and the mechanisms for flow instability of this alloy have been revealed. Flow instability at relatively low temperatures and high strain rates (1350 °C and 1410 °C, 0.1 s−1) is mainly derived from the cracking of Nb5Si3 and the debonding of Nbss/Nb5Si3 interfaces, while flow instability at higher temperatures (1500 °C) should primarily result from the development of cracks and holes within the Nbss phase because of excessive strain accumulation.

Notes

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No. 2017YFB0702903) and the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (Grant No. 143-TZ-2016).

References

  1. 1.
    B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, M.G. Mendiratta and J.J. Lewandowski: MRS Bull., 2003, vol. 28(9), pp. 646-53.CrossRefGoogle Scholar
  2. 2.
    B.P. Bewlay, M.R. Jackson and J.C. Zhao, P.R. Subramanian: Metall. Mater. Trans. A, 2003, vol.34A, pp. 2043-52.CrossRefGoogle Scholar
  3. 3.
    P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk and M.A. Stucke: Mater. Sci. Eng. A, 1997, vol. 239-240, pp. 1-13.CrossRefGoogle Scholar
  4. 4.
    B.P. Bewlay, M.R. Jackson and P.R. Subramanian: JOM, 1999, vol. 51(4), pp. 32-6.CrossRefGoogle Scholar
  5. 5.
    K.S. Chan: Mater. Sci. Eng. A, 2005, vol. 409, pp. 257-69.CrossRefGoogle Scholar
  6. 6.
    J. Sha, C. Yang and J. Liu: Scr. Mater., 2010, vol. 62, pp. 859-62.CrossRefGoogle Scholar
  7. 7.
    I. Grammenos and P. Tsakiropoulos: Intermetallics, 2010, vol. 18, pp. 242-53.CrossRefGoogle Scholar
  8. 8.
    S. Zhang and X. Guo: Mater. Sci. Eng. A, 2015, vol. 638, pp. 121-31.CrossRefGoogle Scholar
  9. 9.
    S. Zhang and X. Guo: Mater. Sci. Eng. A 2015, vol. 645, pp. 88-98.CrossRefGoogle Scholar
  10. 10.
    H. Guo and X. Guo: Scr. Mater., 2011, vol. 64, pp. 637-40.CrossRefGoogle Scholar
  11. 11.
    X.L. Wang and K.F. Zhang: J. Alloys Compd., 2010, vol. 490, pp. 677-83.CrossRefGoogle Scholar
  12. 12.
    X. Li, H. Chen, J. Sha and H. Zhang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6140-52.CrossRefGoogle Scholar
  13. 13.
    Y. Guo, L. Jia, S. Sun, B. Kong, J. Liu and H. Zhang: Mater. Design, 2016, vol. 109, pp. 37-46.CrossRefGoogle Scholar
  14. 14.
    Y. V. R. K. Prasad and T. Seshacharyulu: Int. Mater. Rev., 1998, vol. 43(6), pp. 243-58.CrossRefGoogle Scholar
  15. 15.
    Y. V. R. K. Prasad: J. Mater. Eng. Perform., 2003, vol. 12(6), pp. 638-45.CrossRefGoogle Scholar
  16. 16.
    J.L. Yu, K.F. Zhang, Z.K. Li, X. Zheng, G.F. Wang and R. Bai: Scr. Mater., 2009, vol. 61, pp. 620-23.CrossRefGoogle Scholar
  17. 17.
    Y. Kang, S. Qu, Y. Han, J. Song and D. Tang: Mater. Sci. Forum, 2007, vol. 561-565, pp. 423-26.CrossRefGoogle Scholar
  18. 18.
    Z. Li and L.M. Peng: Acta Mater., 2007, vol. 55, pp. 6573-85.CrossRefGoogle Scholar
  19. 19.
    J.H. Kim, T. Tabaru, H. Hirai, A. Kitahara and S. Hanada: Scr. Mater., 2003, vol. 48, pp. 1439-44.CrossRefGoogle Scholar
  20. 20.
    W. Liu and J.B. Sha: Mater. Design, 2016, vol. 111, pp. 301-11.CrossRefGoogle Scholar
  21. 21.
    M. Thirukkonda, B.Cockeram, M. Saqib, L.E.Matson, R.Srinivasan and I. Weiss: Scr. Mater., 1992, vol. 27, pp. 711-16.CrossRefGoogle Scholar
  22. 22.
    A. Cingara and H.J. McQueen: J. Mater. Process Tech., 1992, vol. 36, pp. 31-42.CrossRefGoogle Scholar
  23. 23.
    Y.C. Lin, D.X Wen, J. Deng, G. Liu and J. Chen: Mater. Design, 2014, vol. 59, pp. 115-23.CrossRefGoogle Scholar
  24. 24.
    S. S. Satheesh Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao and U. Borah: J. Mater. Sci., 2015, vol. 50, pp. 6444-56.CrossRefGoogle Scholar
  25. 25.
    Y. Tang and X. Guo: J. Alloys Compd., 2018, vol. 731, pp. 985-94.CrossRefGoogle Scholar
  26. 26.
    J.J. Jonas, X. Quelennec, L. Jiang and E. Martin: Acta Mater., 2009, vol. 57, pp. 2748-56.CrossRefGoogle Scholar
  27. 27.
    Y. Han, H. Wu, W. Zhang, D. Zou, G. Liu and G. Qiao: Mater. Design, 2015, vol. 69, pp. 230-40.CrossRefGoogle Scholar
  28. 28.
    L. Cheng, X. Xue, B. Tang, H. Kou and J. Li: Intermetallics, 2014, vol. 49, pp. 23-8.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations