Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 5192–5204 | Cite as

Effect of Strain Rate and Temperature on Fracture and Microstructure Evolution of AZ91D Magnesium Alloy Processed by Laser Surface Melting

  • Chao Meng
  • Zhikai Chen
  • Haining Yang
  • Gang Li
  • Xuelei Wang
  • Heng Bao
Article
  • 93 Downloads

Abstract

In this study, microstructure evolution and fracture of the AZ91D magnesium alloy processed by laser surface melting (LSM) were investigated in the temperature range of room temperature (RT) ~ 350 °C and the strain rate range of 10−4 to 10−1 s−1. Macro fracture morphology of the LSM-treated sample was tortuous, and this was responsible for the improved strength compared to that of the as-received sample at different temperatures and strain rates. Micro fracture morphology of the laser-melted zone was always the ductile mode at different temperatures and strain rates, whereas micro fracture morphologies of the untreated zone were brittle fracture at RT and the ductile mode at high temperatures. Dynamic recrystallization was not observed in the laser-melted zone at different temperatures and strain rates, and this can contribute to the improved strength of the LSM-treated sample. In addition, the improved strength of the LSM-treated sample was also attributed to better thermal stability compared to that of the as-received sample.

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of Liaoning Province (No. 20170540421) and PhD Research Startup Fund of Liaoning Technical University (No. 16-1009).

References

  1. 1.
    B.L. Mordike, and T. Ebert. Mater. Sci. Eng. A, 2001, vol. 302, pp. 37-45.CrossRefGoogle Scholar
  2. 2.
    N.V. Dudamell, P.Hidalgo-Manrique, A.Chakkedath, Z.Chen, C.J.Boehlert, F.Gálvez, S.Yi, J.Bohlen, D.Letzig and M.T.Pérez-Prado: Mater. Sci. Eng. A, 2013, vol. 583, pp. 220-31.CrossRefGoogle Scholar
  3. 3.
    A. A. Luo: Int. Mater. Rev, 2004 vol. 49 pp. 13-30.CrossRefGoogle Scholar
  4. 4.
    W. W. Du, Y. S. Sun, X. G. Min, F. Xue, M. Zhu and D. Y. Wu: Mater. Sci. Eng. A, 2003, vol. 356, pp.1-7.CrossRefGoogle Scholar
  5. 5.
    F. Khomamizadeh, B. Nami, and S. Khoshkhooei: Metall. Mater. Trans. A, 2005, vol. 36, pp. 3489-94.CrossRefGoogle Scholar
  6. 6.
    R. Mahmudi, F. Kabirian, and Z. Nematollahi: Mater. Des, 2011 vol. 32, pp. 2583-9.CrossRefGoogle Scholar
  7. 7.
    A. Srinivasan, U. T. S. Pillai, and B. C. Pai: Metall. Mater. Trans. A, 2005, vol. 36, pp. 2235-43.CrossRefGoogle Scholar
  8. 8.
    T.M. Pollock: Science, 2010, vol. 328, pp. 986-7.CrossRefGoogle Scholar
  9. 9.
    S. F. Hassan, and M. Gupta: Mater. Sci. Eng. A, 2006, vol. 425, pp. 22-7.CrossRefGoogle Scholar
  10. 10.
    V. Sklenička, M. Pahutová, K. Kuchařová, M. Svoboda, and T. G. Langdon: Metall. Mater. Trans. A, 2002, vol. 33, pp. 883-9.CrossRefGoogle Scholar
  11. 11.
    H.Z.Ye, and X.Y. Liu: J. Mater. Sci, 2004, vol. 39, pp. 6153-71.CrossRefGoogle Scholar
  12. 12.
    S. Jayalakshmi, S. V. Kailas, and S. Seshan: Compos Part A-Appl S, 2002, vol. 33, pp. 1135-40.CrossRefGoogle Scholar
  13. 13.
    S. F. Hassan, M. Paramsothy, F. Patel, and M. Gupta: Mater. Sci. Eng. A, 2012, vol. 558, pp. 278-84.CrossRefGoogle Scholar
  14. 14.
    S. F. Hassan, M. Paramsothy, Z. M. Gasem, F. Patel, and M. Gupta: J. Mater. Eng. Perform, 2014, vol. 23, pp. 2984-91.CrossRefGoogle Scholar
  15. 15.
    M. Rashad, F. S. Pan, D. Lin, and M. Asif: Mater. Des, 2016, vol. 89, pp. 1242-50.CrossRefGoogle Scholar
  16. 16.
    G. Abbas, L. Li, U. Ghazanfar, and Z. Liu: Wear, 2006, vol. 260, pp. 175-80.CrossRefGoogle Scholar
  17. 17.
    Y. K. Zhang, J. F. Chen, W. N. Lei, and R. J. Xv: Surf. Coat. Technol, 2008, vol. 202, pp. 3175-9.CrossRefGoogle Scholar
  18. 18.
    J. D. Majumdar, R. Galun, B. L. Mordike, and I. Manna: Mater. Sci. Eng. A, 2003, vol. 361, pp. 119-29.CrossRefGoogle Scholar
  19. 19.
    G. Abbs, Z. Liu, and P. Skeldon: Appl. Surf. Sci, 2005, vol. 247, pp. 347-53.CrossRefGoogle Scholar
  20. 20.
    A. E. Coy, F. Viejo, F. J. Garcia- Garcia, Z. Liu, P. Skeldon, and G. E. Thompson: Corros. Sci, 2010, vol. 52, pp. 387-97.CrossRefGoogle Scholar
  21. 21.
    K. F. Alabeedi, J. H. Abboud, and K. Y. Benyounis: Wear, 2009, vol. 266, pp. 925-33.CrossRefGoogle Scholar
  22. 22.
    P. C. Banerjee, R. K. S. Raman, Y. Durandet, and G. McAdam: Corros. Sci, 2011, vol. 53, pp. 1505-14.CrossRefGoogle Scholar
  23. 23.
    B. S. Yilbas, I. H. Toor, F. Patel, and M. A. Baig: J. Mater. Eng. Perform, 2013, vol. 22, pp. 1505-11.CrossRefGoogle Scholar
  24. 24.
    J. Grum, and R. Šturm: Appl. Surf. Sci, 2002, vol. 187, pp. 116-23.CrossRefGoogle Scholar
  25. 25.
    J. Grum, and J. M. Slabe: Appl. Surf. Sci, 2005, vol. 247, pp. 458-65.CrossRefGoogle Scholar
  26. 26.
    X. Tong, H. Zhou, Z. Z. Zhang, N. Sun, H. Y. Shan, and L. Q. Ren: Mater. Sci. Eng. A, 2007, vol. 467, pp. 97-103.CrossRefGoogle Scholar
  27. 27.
    Z. X. Jia, Y. W. Liu, J. Q. Li, L. J. Liu, and H. L. Li: Int. J. Fatigue, 2015, vol. 78, pp. 61-71.CrossRefGoogle Scholar
  28. 28.
    Z. B. Pang, H.Zhou, P. Zhang, D. L. Cong, C. Meng, C. W. Wang, and L. Q. Ren: Appl. Surf. Sci, 2015, vol. 331, pp. 179-84.CrossRefGoogle Scholar
  29. 29.
    C. W. Wang, H. Zhou, Z. Z. Zhang, Z. J. Jing, D. L. Cong, C. Meng, and L. Q. Ren: Appl. Surf. Sci, 2013, vol. 27, pp. 128-34.Google Scholar
  30. 30.
    C. W. Wang, H. Zhou, N. Liang, C. T. Wang, D. L. Cong, C. Meng, and L. Q. Ren: Appl. Surf. Sci, 2014, vol. 313, pp. 333-40.CrossRefGoogle Scholar
  31. 31.
    Z. Z. Zhang, P. Y. Lin, S. H. Kong, X. J. Li, and L. Q. Ren: Opt. Laser. Technol, 2015, vol. 70, pp. 1-6.CrossRefGoogle Scholar
  32. 32.
    C. Meng, Z. K. Chen, G. Li, and P. Dong: J. Alloy. Compd, 2017, vol. 711, pp. 258-66.CrossRefGoogle Scholar
  33. 33.
    A.K. Rodriguez, G. Kridli, G. Ayoub, and H. Zbib: J. Mater. Eng. Perform, 2013, vol. 22, pp. 3115-25.CrossRefGoogle Scholar
  34. 34.
    B. Gao, S.Z. Hao, J.X. Zou, W.Y. Wu, G.F. Tu, and C. Dong: Surf. Coat. Technol, 2007, vol. 201, pp. 6297-303.CrossRefGoogle Scholar
  35. 35.
    C. C. Liu, J. Liang, J. S. Zhou, L. Q. Wang, and Q. B. Li: Appl. Surf. Sci, 2015, vol. 343, pp. 133-40.CrossRefGoogle Scholar
  36. 36.
    J. Deng, Y. C. Lin, S. S. Li, J. Chen, and Y. Ding: Mater. Des, 2013, vol. 49, pp. 209-19.CrossRefGoogle Scholar
  37. 37.
    X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner: Int. J. Plast, 2007, vol. 23, pp. 44-86.CrossRefGoogle Scholar
  38. 38.
    D.L. Cong, H. Zhou, M.Q. Yang, Z.H. Zhang, P. Zhang, C. Meng, and C.W. Wang: Opt. Laser. Technol, 2013, vol. 53, pp. 1-8.CrossRefGoogle Scholar
  39. 39.
    A.K. Rodriguez, G. A. Ayoub, B. Mansoor, and A. A. Benzerga: Acta. Mater, 2016, vol. 112, pp. 194-208.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Chao Meng
    • 1
  • Zhikai Chen
    • 2
  • Haining Yang
    • 1
  • Gang Li
    • 1
  • Xuelei Wang
    • 1
  • Heng Bao
    • 3
  1. 1.School of Materials Science and EngineeringLiaoning Technical UniversityFuxinChina
  2. 2.The Academy of Xuzhou Construction MachineryXuzhou Construction Machinery GroupXuzhouChina
  3. 3.Security Department of 9588 TroopsChangchunChina

Personalised recommendations