Impact of Annealing Prior to Solution Treatment on Aging Precipitates and Intergranular Corrosion Behavior of Al-Cu-Li Alloy 2050

  • Zhi-hao Ye
  • Wen-xin Cai
  • Jin-feng Li
  • Xiang-rong Chen
  • Rui-feng Zhang
  • Nick Birbilis
  • Yong-lai Chen
  • Xu-hu Zhang
  • Peng-cheng Ma
  • Zi-qiao Zheng
Article
  • 16 Downloads

Abstract

The influences of annealing prior to solution treatment on the grain structure, subsequent aging precipitates, and intergranular corrosion (IGC) of Al-Cu-Li alloy (AA2050) sheet with T6 aging at 448 K (175 °C) were investigated. Annealing impedes the full recrystallization during solution treatment, increasing the population density of T1 (Al2CuLi) precipitates, but decreasing that of θ′ (Al2Cu) precipitates, of the aged alloy. Meanwhile, annealing leads to the heterogeneous distribution of T1 precipitates, increasing the alloy hardness, and decreasing the open-circuit potential of the aged alloy. With prolonged aging time, the corrosion mode of the aged AA2050 samples with and without annealing evolved in a similar manner. The corrosion mode as a function of aging may be summarized as local IGC with pitting and general IGC with pitting (following initial aging and under the underaged condition), pitting corrosion (later in the under-aging stage), pitting with slight IGC (near the peak-aged condition), and pitting with local IGC (under the overaging condition). The annealing treatment hinders IGC propagation on the rolling surface while accelerating the IGC on transverse surfaces.

Notes

Acknowledgments

This work is supported by the National Foundation of China (TDZX-17-005-1). The financial support from the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center is also greatly appreciated.

References

  1. 1.
    J.P. Immarigeon, R.T. Holt, A.K. Koul, L. Zhao, W. Wallace, and J.C. Beddoes: Mater. Charact., 1995, vol. 35, pp. 41-67.CrossRefGoogle Scholar
  2. 2.
    R.J. Rioja, and J. Liu: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3325-3337.CrossRefGoogle Scholar
  3. 3.
    T. Warner: Mater. Sci. Forum, 2006, vols. 519-521, pp. 1271-1278.CrossRefGoogle Scholar
  4. 4.
    N.E. Prasad, A. Gokhale, and R.J.H Wanhill: Aluminum-Lithium Alloys: Processing, Properties, and Applications, Elsevier, Waltham, MA. 2014, pp. 63–65 and 261.Google Scholar
  5. 5.
    J.F. Nie, B.C. Muddle, and I.J. Polmear: Mater. Sci. Forum, 1996, vols. 217-222, pp. 1257-1262.CrossRefGoogle Scholar
  6. 6.
    J.C. Huang, and A.J. Ardell: Acta Metall., 1988, vol. 36, pp. 2995-3006.CrossRefGoogle Scholar
  7. 7.
    B. Decreus, A. Deschamps, F.D. Geuser, P. Donnadieu, C. Sigli, and M. Weyland: Acta Mater., 2013, vol. 61, pp. 2207-2218.CrossRefGoogle Scholar
  8. 8.
    Q. Liu, R.H. Zhu, D.Y. Liu, Y. Xu, J.F. Li, Y.L. Chen, Z.H. Zhang, and Z.Q. Zheng: Mater. Corros., 2017, vol. 68, pp. 65-76.CrossRefGoogle Scholar
  9. 9.
    J.F. Li, P.L. Liu, Y.L. Chen, X.H. Zhang, and Z.Q. Zheng: Trans. Nonferrous Met. Soc. China, 2015, vol. 25, pp. 2103−2112.CrossRefGoogle Scholar
  10. 10.
    W.A. Cassada, G.J. Shiflet, and E.A. Starke: Metall. Mater. Trans. A, 1991, vol. 22, pp. 287-297.CrossRefGoogle Scholar
  11. 11.
    W.A. Cassada, G.J. Shiflet, and E.A. Starke: Metall. Mater. Trans. A, 1991, vol. 22, pp. 299-306.CrossRefGoogle Scholar
  12. 12.
    B.M. Gable, A.W. Zhu, A.A. Csontos, and E. Starke: J. Light Met., 2001, vol. 1, pp. 1-14.CrossRefGoogle Scholar
  13. 13.
    T. Dorin, A. Deschamps, F.D. Geuser, and F. Robaut: Mater. Sci. Eng. A, 2014, vol. 627, pp. 51-55.CrossRefGoogle Scholar
  14. 14.
    R.G. Buchheit, J.P. Moran, and G.E. Stoner: Corrosion, 1994, vol. 50, pp. 120-130.CrossRefGoogle Scholar
  15. 15.
    J.F. Li, Z.Q. Zheng, S.C. Li, W.J. Chen, W.D. Ren, and X.S. Zhao: Corros. Sci., 2007, vol. 49, pp. 2436-49.CrossRefGoogle Scholar
  16. 16.
    R.G. Buchheit, J.P. Moran, and G.E. Stoner: Corrosion, 2012, vol. 46, pp. 610-617.CrossRefGoogle Scholar
  17. 17.
    M. Guérin, J. Alexis, E. Andrieu, L. Laffont, W. Lefebvre, G. Odemer, and C. Blanc: Corros. Sci., 2016, vol. 102, pp. 291-300.CrossRefGoogle Scholar
  18. 18.
    V. Proton, J. Alexis, E. Andrieu, J. Delfosse, A. Deschamps, F.D. Geuser, M.C. Lafont, and C. Blanc: Corros. Sci., 2014, vol. 80, pp. 494–502.CrossRefGoogle Scholar
  19. 19.
    V. Proton, J. Alexis, E. Andrieu, J. Delfosse, M.C. Lafont, and C. Blanc: Corros. Sci., 2013, vol. 73, pp. 130-142.CrossRefGoogle Scholar
  20. 20.
    Y. Ma, X. Zhou, Y. Liao, Y. Yi, H. Wu, Z. Wang, and W. Huang: Corros. Sci., 2017, vol. 107, pp. 41-48.CrossRefGoogle Scholar
  21. 21.
    J.E. Kertz, P.I. Gouma, and R.G. Buchheit: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2561-2573.CrossRefGoogle Scholar
  22. 22.
    W. Huang, Y. Ma, X. Zhou, X. Meng, Y. Liao, L. Chai, Y. Yi, and X. Zhang: Surf. Interface. Anal., 2015, vol. 48, pp. 838-842.CrossRefGoogle Scholar
  23. 23.
    Y. Ma, X. Zhou, W. Huang, G.E. Thompson, and X. Zhang: Corros. Eng. Sci. Technol., 2015, vol. 50, pp. 420-24.CrossRefGoogle Scholar
  24. 24.
    N. Ott, S.K. Kairy, Y. Yan, and N. Birbilis: Metall. Mater. Trans. A, 2017, vol. 48, pp. 51-56.CrossRefGoogle Scholar
  25. 25.
    N. Ott, Y.M. Yan, S. Ramamurthy, S. Kairy, and N. Brbilis: Metall. Mater. Trans. A, 2016, vol. 119, pp. 17-20.Google Scholar
  26. 26.
    M.J. Robinson, and N.C. Jackson: Corros. Sci., 1999, vol. 41, pp. 1013-1028.CrossRefGoogle Scholar
  27. 27.
    K.D. Ralston, D. Fabijanic, and N. Birbilis: Electrochim. Acta, 2011, vol. 56, pp. 1729-1736.CrossRefGoogle Scholar
  28. 28.
    E. Kus, Z. Lee, S. Nutt, and F. Mansfeld: Corrosion, 2006, vol. 62, pp. 152-161.CrossRefGoogle Scholar
  29. 29.
    E. Sikora, X.J. Wei, and B.A. Shaw: Corrosion, 2006, vol. 60, pp. 387-389.CrossRefGoogle Scholar
  30. 30.
    T.C. Tsai, and T.H. Chuang: Mater. Sci. Eng. A, 1997, vol. 225, pp. 135-144.CrossRefGoogle Scholar
  31. 31.
    K.D. Ralston, N. Birbilis, and C.H.J. Davies: Scripta Mater., 2010, vol. 63, pp. 1201-1204.CrossRefGoogle Scholar
  32. 32.
    S. Ruan, D.A. Wolfe, and G.S. Frankel: J. Statist. Plann. Inference, 2004, vol. 126, pp. 553-568.CrossRefGoogle Scholar
  33. 33.
    Z.M. Wang, and R.N. Shenoy: (Microstructural Characterization of Aluminum-Lithium Alloys 1460 and 2195) Report No. NASA/CR-1998-206914, Analytical Services and Materials, Inc., Hampton, VA, February 1998.Google Scholar
  34. 34.
    T. Dorin, P. Donnadieu, J.M. Chaix, W. Lefebvre, F.D. Geuser, and A. Deschamps: Micron., 2015, vol. 78, pp. 19-27.CrossRefGoogle Scholar
  35. 35.
    J. Murray, A. Peruzzi, and J.P. Abriata: J. Phase Equilib., 1992, vol. 13, pp. 277-291.CrossRefGoogle Scholar
  36. 36.
    E. Anselmino, A. Miroux, and S.V.D. Zwaag: Mater. Charact., 2004, vol. 52, pp. 289-300.CrossRefGoogle Scholar
  37. 37.
    K.P. Mingard, B. Cantor, I.G. Palmer, I.R. Hughes, P.W. Alexander, T.C. Willis, and J. White: Acta Mater. 2000, vol. 48, pp. 2435-2449.CrossRefGoogle Scholar
  38. 38.
    R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman: Prog. Mater Sci., 2008, vol. 53, pp. 421-480.CrossRefGoogle Scholar
  39. 39.
    D. Tsivoulas, J.D. Robson, C. Sigli, and P.B. Prangnell: Acta Mater., 2012, vol. 60, pp. 5245-5259.CrossRefGoogle Scholar
  40. 40.
    F.J. Humphreys, and M. Hatherly: Recrystallisation and Related Annealing Phenomena, Elsevier, New York, NY, 2004, pp. 215-267.CrossRefGoogle Scholar
  41. 41.
    J.F. Humphreys: Mater. Sci. Forum, 2004, vols. 467-470, pp. 107-116.CrossRefGoogle Scholar
  42. 42.
    G. Gottstein, D.A. Molodov, and L.S. Shvindlerman: Interf. Sci., 1998, vol. 126, pp. 7-22.CrossRefGoogle Scholar
  43. 43.
    P.A. Beck, and P.R. Sperry: J. Appl. Phys., 1950, vol. 21, pp. 150-152.CrossRefGoogle Scholar
  44. 44.
    P. Bate, and B. Hutchinson: Scripta Mater., 1997, vol. 36, pp. 195-198.CrossRefGoogle Scholar
  45. 45.
    M.C. Theyssier, and J.H. Driver: Mater. Sci. Eng. A, 1999, vol. 272, pp. 73-82.CrossRefGoogle Scholar
  46. 46.
    M. Winning: Scripta Mater., 2008, vol. 58, pp. 85-88.CrossRefGoogle Scholar
  47. 47.
    K. Kashihara, and F. Inoko: Acta Mater., 2001, vol. 49, pp. 3051-3061.CrossRefGoogle Scholar
  48. 48.
    X.F. Luo, Z.Q. Zheng, J.F. Zhong, H.F. Zhang, S.C. Li, and J.F. Li: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 1833-1842.Google Scholar
  49. 49.
    J.F. Li, N. Birbilis, D.Y. Liu, Y.L. Chen, X.H. Zhang, and C. Cai: Corros. Sci., 2016, vol. 105, pp. 44-57.CrossRefGoogle Scholar
  50. 50.
    J.F. Li, Z.Q. Zheng, W.D. Ren, W.J. Chen, X.S. Zhao, and S.C. Li: Trans. Nonferrous Met. Soc. China, 2006, vol. 16, pp. 1268-1273.CrossRefGoogle Scholar
  51. 51.
    J.F. Li, C.X. Li, Z.W. Peng, W.J. Chen, and Z.Q. Zheng: J. Alloys. Compd., 2008, vol. 460, pp. 688-693.CrossRefGoogle Scholar
  52. 52.
    F.L. Jin, Z. Zheng, N. Jiang, and C. Tan: Mater. Chem. Phys., 2005, vol. 91, pp. 325-329.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Zhi-hao Ye
    • 1
  • Wen-xin Cai
    • 1
  • Jin-feng Li
    • 1
    • 2
  • Xiang-rong Chen
    • 1
  • Rui-feng Zhang
    • 3
  • Nick Birbilis
    • 3
  • Yong-lai Chen
    • 4
  • Xu-hu Zhang
    • 4
  • Peng-cheng Ma
    • 4
  • Zi-qiao Zheng
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of EducationChangshaChina
  3. 3.Department of Materials Science and EngineeringMonash UniversityClaytonAustralia
  4. 4.Aerospace Research Institute of Materials and Processing TechnologyBeijingChina

Personalised recommendations