Metallurgical and Materials Transactions A

, Volume 49, Issue 7, pp 2795–2802 | Cite as

Assessment of EBSD Analysis and Reconstruction Methods as a Tool for the Determination of Recrystallized Fractions in Hot-Deformed Austenitic Microstructures

  • Tim Krämer
  • Lena Eisenhut
  • Lionel Germain
  • Daniel Rupp
  • Eric Detemple
  • Christian Motz


The microstructural evolution of hot-deformed austenite during recrystallization was studied in a non-microalloyed low carbon steel and a low carbon steel, microalloyed with niobium and titanium. Double-hit compression tests were carried out to evaluate the isothermal recrystallization behavior. Specific deformation temperatures and interpass times were combined to produce characteristic recrystallization states by quenching the samples to a martensitic microstructure. The reconstruction software Merengue 2 was used to determine the prior austenite microstructure and evaluate the recrystallized fraction in the microstructure. The reconstruction is based on EBSD measurements of the martensitic microstructure. The determination of the recrystallized fraction was realized by evaluating the grain orientation spread. This work compares the results of both methods and estimates their uncertainties. It shows the potential of EBSD reconstruction methods to characterize different recrystallization states of low carbon steels out of EBSD data.


  1. 1.
    L Bäcke (2010) ISIJ Int. 50(2):239–247.CrossRefGoogle Scholar
  2. 2.
    B Dutta, CM Sellars (1987) Am. J. Mater. Sci. Technol. 3(3):197-206.CrossRefGoogle Scholar
  3. 3.
    FJ Humphreys (1997) Acta Mater. 45(12):5031-5039.CrossRefGoogle Scholar
  4. 4.
    H Watanabe, YE Smith, RD Pehlke (1997) The Hot Deformation of Austenite. Metallurgical Society, AIME, New York, pp. 140-168.Google Scholar
  5. 5.
    S Vervynckt, K Verbeken, B Lopez, JJ Jonas (2012) Int. Mater. Rev. 57(4):187-207.CrossRefGoogle Scholar
  6. 6.
    S Bechet, L Beaujard (1955) Rev. Metall. (Paris) 52(10):830–836CrossRefGoogle Scholar
  7. 7.
    S Weyand, D Britz, D Rupp, F Mücklich (2015) Mater. Perform. Charact. 4(3):322-340.Google Scholar
  8. 8.
    G. Nolze: Cryst. Res. Technol., 2006, 41(1):72-77.CrossRefGoogle Scholar
  9. 9.
    C Cayron (2007) J. Appl. Crystallogr. 40(6):1183-1188.CrossRefGoogle Scholar
  10. 10.
    L. Germain, P. Blaineau, N. Gey, M. Humbert: Mater. Sci. Forum, 2011, vol. 702, pp. 846-849.CrossRefGoogle Scholar
  11. 11.
    M. Humbert, L. Germain, N. Gey, E. Boucard: Acta Mater., 2015, vol. 82, pp. 137-144.CrossRefGoogle Scholar
  12. 12.
    M. Kubota, K. Ushioda, G. Miyamoto, T. Furuhara: Scr. Mater., 2016, vol. 112, :92-95.CrossRefGoogle Scholar
  13. 13.
    G Miyamoto, N Takayama, T Furuhara (2009) Scr. Mater. 60(12):1113-1116.CrossRefGoogle Scholar
  14. 14.
    JS Perttula, LP Karjalainen (1998) Mater. Sci. Technol. 14(7):626-630.CrossRefGoogle Scholar
  15. 15.
    AI Fernández, B López, JM Rodríguez-Ibabe (1999) Scr. Mater. 40(5):543-549.CrossRefGoogle Scholar
  16. 16.
    CN Homsher, CJ Van Tyne (2015) Mater. Perform. Charact. 4(3):293-306.Google Scholar
  17. 17.
    M. Humbert, P. Blaineau, L. Germain, N. Gey: Scr. Mater., 2011, vol. 64, :114-117.CrossRefGoogle Scholar
  18. 18.
    DP Field, LT Bradford, MM Nowell, TM Lillo (2007) Acta Mater. 55(12):4233-4241.CrossRefGoogle Scholar
  19. 19.
    H. Mirzadeh, A. Najafizadeh, J. M. Cabrera, P. Rodriguez-Calvillo: Mater. Sci. Eng. A, 2012, vol. 538, pp. 236-245.CrossRefGoogle Scholar
  20. 20.
    H. Sato, S. Zaefferer: Acta Mater., 2009, vol. 57, pp. 1931–1937CrossRefGoogle Scholar
  21. 21.
    L. Eisenhut, D. Rupp, and C. Motz: Assoc. Ital. Metall., Conference Proceeding, 5th International Conference on Thermomechanical Processing, Milan, 2016Google Scholar
  22. 22.
    AIZ Farahat (2008) J. Mater. Process. Technol. 204(1):365-369.CrossRefGoogle Scholar
  23. 23.
    Y Huang, FJ Humphreys (2012) Mater. Chem. Phys. 132(1):166-174.CrossRefGoogle Scholar
  24. 24.
    P. Uranga, A. I. Fernández, B. López, J. M. Rodríguez-Ibabe: Mater. Sci. Eng. A, 2003, vol. 345, :319-327.CrossRefGoogle Scholar
  25. 25.
    SF Medina (1997) J. Mater. Sci. 32(6):1487-1492.CrossRefGoogle Scholar
  26. 26.
    S Vervynckt, K Verbeken, P Thibaux, M Liebeherr (2009) ISIJ Int. 49(6):911-920.CrossRefGoogle Scholar
  27. 27.
    S. Vervynckt, K. Verbeken, P. Thibaux, Y. Houbaert: Mater. Sci. Eng. A, 2011, vol. 528, :5519-5528.CrossRefGoogle Scholar
  28. 28.
    D. P. Field: Ultramicroscopy, 1997, vol. 67, :1-9.CrossRefGoogle Scholar
  29. 29.
    L. Germain: Habilitation dissertation, 2014,
  30. 30.
    P. Blaineau, L. Germain, M. Humbert, N. Gey: Solid State Phenom., 2010, vol. 160, pp. 203-210.CrossRefGoogle Scholar
  31. 31.
    N. Bernier, L. Bracke, L. Malet, S. Godet: Mater. Charact., 2014, vol. 89, pp. 23-32.CrossRefGoogle Scholar
  32. 32.
    K. Radwanski: Steel Res. Int., 2015, vol.86, pp. 1379–1390.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Tim Krämer
    • 1
  • Lena Eisenhut
    • 1
  • Lionel Germain
    • 2
    • 3
  • Daniel Rupp
    • 4
  • Eric Detemple
    • 4
  • Christian Motz
    • 1
  1. 1.Department for Materials Science and EngineeringSaarland UniversitySaarbrückenGermany
  2. 2.Laboratoire LEM3UMR CNRS 7239, Université de LorraineMetzFrance
  3. 3.Laboratory of Excellence for Design of Alloy Metals for Low-mass Structures (‘DAMAS’ Labex)University de LorraineLorraineFrance
  4. 4.DillingerDillingenGermany

Personalised recommendations