Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1113–1118 | Cite as

Interfacial Effect on the Deformation Mechanism of Bulk Nanolaminated Graphene-Al Composites

  • Lei Zhao
  • Qiang GuoEmail author
  • Yan Shi
  • Yu Liu
  • Shmuel Osovski
  • Zhiqiang Li
  • Ding-Bang Xiong
  • Yishi Su
  • Di ZhangEmail author


Uniaxial tensile tests were carried on graphene (reduced graphene oxide, RGO)–Al laminated composites with Al lamella thicknesses varying from 1 μm down to 200 nm. It was found that there was a transition in plastic deformation mechanism, from a Hall–Petch-typed mechanism at 500 nm and 1 μm Al lamella thicknesses, to confined layer slip (CLS) of dislocations at the 200 nm Al lamella thickness. Moreover, the strengthening effect of RGO was only demonstrated in composite having 200-nm-thick Al lamellas, which can be rationalized by the enhanced barrier for dislocation de-pinning processes in the CLS mechanism.


This work was supported by the financial support from the Ministry of Science and Technology of China (No. 2016YFE0130200, 2017YFB0703100), the Natural Science Foundation of China (Nos. 51771111, 51771110, 51671130, 51501111), the Science & Technology Committee of Shanghai Municipality (No. 17520712400), and China Scholarship Council (CSC) (No. 201706230104).

Supplementary material

11661_2018_5108_MOESM1_ESM.docx (3.8 mb)
Supplementary material 1 (DOCX 3942 kb)


  1. 1.
    N. Chawla and Y.L. Shen: Adv. Eng. Mater., 2001, vol. 3, pp. 357–70.CrossRefGoogle Scholar
  2. 2.
    L.J. Huang, L. Geng and H.X. Peng: Prog. Mater. Sci., 2015, vol. 71, pp. 93–68.CrossRefGoogle Scholar
  3. 3.
    R.O. Ritchie: Nat. Mater., 2011, vol. 10, pp. 817–22.CrossRefGoogle Scholar
  4. 4.
    J.W.C. Dunlop and P. Fratzl: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 1–24.CrossRefGoogle Scholar
  5. 5.
    H. Gao, B. Ji, I.L. Jager, E. Arzt and P. Fratzl: Proc. Natl. Acad. Sci., 2003, vol. 100, pp. 5597–600.CrossRefGoogle Scholar
  6. 6.
    M.E. Launey and R.O. Ritchie: Adv. Mater., 2009, vol. 21, pp. 2103–10.CrossRefGoogle Scholar
  7. 7.
    T.J. Kang, J.W. Yoon, D.I. Kim, S.S. Kum, Y.H. Huh, J.H. Hahn, S.H. Moon, H.Y. Lee and Y.H. Kim: Adv. Mater., 2007, vol. 19, pp. 427–32.CrossRefGoogle Scholar
  8. 8.
    L. Jiang, Z. Li, G. Fan, L. Cao and D. Zhang: Scripta Mater., 2012, vol. 66, pp. 331–34.CrossRefGoogle Scholar
  9. 9.
    Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon and S.M. Han: Nat. Commun., 2013, vol. 4, 2114.CrossRefGoogle Scholar
  10. 10.
    Z Li, GL Fan, Q Guo, ZQ Li, YS Su, D Zhang (2015) Carbon 95:419–27.CrossRefGoogle Scholar
  11. 11.
    Z. Li, Q. Guo, Z. Li, G. Fan, D.B. Xiong, Y. Su, J. Zhang and D. Zhang: Nano Lett., 2015, vol. 15, pp. 8077–83.CrossRefGoogle Scholar
  12. 12.
    S.W. Feng, Q. Guo, Z. Li, G.L. Fan, Z.Q. Li, D.B. Xiong, Y.S. Su, Z.Q. Tan, J. Zhang and D. Zhang: Acta Mater., 2017, vol. 125, pp. 98–08.CrossRefGoogle Scholar
  13. 13.
    M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427–56.CrossRefGoogle Scholar
  14. 14.
    J.Y. Zhang, X. Zhang, R.H. Wang, S.Y. Lei, P. Zhang, J.J. Niu, G. Liu, G.J. Zhang and J. Sun: Acta Mater., 2011, vol. 59, pp. 7368–79.CrossRefGoogle Scholar
  15. 15.
    L. Zhao, Q. Guo, Z. Li, Z.Q. Li, G.L. Fan, D.-B. Xiong, Y.S. Su, J. Zhang, Z.Q. Tan and D. Zhang: Int. J. Plast., 2018, vol. 105, pp. 128–40.CrossRefGoogle Scholar
  16. 16.
    Z. Li, L. Zhao, Q. Guo, Z.Q. Li, G.L. Fan, C.P. Guo and D. Zhang: Scripta Mater., 2017, vol. 131, pp. 67–71.CrossRefGoogle Scholar
  17. 17.
    Z. Li, G. Fan, Z. Tan, Q. Guo, D. Xiong, Y. Su, Z. Li and D. Zhang: Nanotechnology, 2014, vol. 25, pp. 325601.CrossRefGoogle Scholar
  18. 18.
    L.J. Bonderer, A.R. Studart and L.J. Gauckler: Science, 2008, vol. 319, pp. 1069–73.CrossRefGoogle Scholar
  19. 19.
    R.E. Stoller and S.J. Zinkle: J. Nucl. Mater., 2000, vol. 283–287, pp. 349–52.CrossRefGoogle Scholar
  20. 20.
    A. Misra, J.P. Hirth and R.G. Hoagland: Acta Mater., 2005, vol. 53, pp. 4817–24.CrossRefGoogle Scholar
  21. 21.
    P.M. Anderson and C. Li: Nanostruct. Mater., 1995, vol. 5, pp. 349–62.CrossRefGoogle Scholar
  22. 22.
    A. Misra, J.P. Hirth and H. Kung: Philos. Mag., 2002, vol. 82, pp. 2935–51.CrossRefGoogle Scholar
  23. 23.
    N. Li, J. Wang, A. Misra and J.Y. Huang: Microsc. Microanal., 2012, vol. 18, pp. 1155–62.CrossRefGoogle Scholar
  24. 24.
    A.H.W. Ngan, X.X. Chen, P.S.S. Leung, R. Gu and K.F. Gan: MRS Commun., 2017, vol. 7, pp. 131–40.CrossRefGoogle Scholar
  25. 25.
    B. Devincre, T. Hoc and L. Kubin: Science, 2008, vol. 320, pp. 1745–48.CrossRefGoogle Scholar
  26. 26.
    A. Donohue, F. Spaepen, R. G. Hoagland and A. Misra: Appl. Phys. Lett., 2007, vol. 91, pp. 241905.CrossRefGoogle Scholar
  27. 27.
    J.Y. Zhang, G. Liu, S.Y. Lei, J.J. Niu and J. Sun: Acta Mater., 2012, vol. 60, pp. 7183–96.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Lei Zhao
    • 1
  • Qiang Guo
    • 1
    Email author
  • Yan Shi
    • 1
  • Yu Liu
    • 1
  • Shmuel Osovski
    • 2
  • Zhiqiang Li
    • 1
  • Ding-Bang Xiong
    • 1
  • Yishi Su
    • 1
  • Di Zhang
    • 1
    Email author
  1. 1.State Key Lab of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Faculty of Mechanical EngineeringTechnion- Israel Institute of TechnologyHaifaIsrael

Personalised recommendations