Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1409–1420 | Cite as

Measurement of Diffusion Coefficients in the bcc Phase of the Ti-Sn and Zr-Sn Binary Systems

  • Lilong Zhu
  • Zhangqi Chen
  • Wei Zhong
  • Changdong Wei
  • Gemei CaiEmail author
  • Liang Jiang
  • Zhanpeng Jin
  • Ji-Cheng ZhaoEmail author


Sn and Zr are two important alloying elements in low-modulus biomedical titanium alloys, yet experimental data on Sn diffusion in bcc Ti and bcc Zr are still very limited in the literature, and thus were systematically measured in the present study using solid–solid diffusion couples (SSDCs) and novel liquid–solid diffusion couples (LSDCs). Both interdiffusion and impurity diffusion coefficients in the bcc phase of the Ti-Sn and Zr-Sn systems were extracted with forward-simulation analysis (FSA), and show good agreement with existing literature. The interdiffusion coefficients in the Ti-Sn system at six temperatures, from 950 °C to 1200 °C, extend experimental measurements to a much wider composition range, and the interdiffusion coefficients in the Zr-Sn system at 1200 °C, 1150 °C, and 1100 °C are the first such data experimentally measured. The data obtained from this study, together with our previous data for the Ti-X (X = Cr, Hf, Mo, Nb, V, Zr) systems, provide reliable experimental inputs to improve the mobility databases for advanced Ti alloys development. In addition, the excellent agreement between the LSDCs and SSDCs results validates the reliability of this novel approach by combining LSDC experiments and FSA in evaluating diffusion coefficients at elevated temperatures.



Financial support by grants from the National Key Research and Development Plan (Nos. 2016YFB0701301 and 2018YFE0306101), Major State Basic Research Development Programs of China (No. 2014CB6644002), and the Project of Innovation-driven Plan in Central South University (No. 2015CX004) is gratefully acknowledged. The project is also partially supported by State Key Laboratory of Powder Metallurgy (Central South University, Changsha, China).


  1. 1.
    V.S. de Viteri and E. Fuentes (2013) Titanium and Titanium Alloys as Biomaterials, In: J. Gegner (eds): Tribology: Fundamentals and Advancements, IntechOpen, Rijeka.Google Scholar
  2. 2.
    H.J. Rack and J.I. Qazi: Mater. Sci. Eng. C, 2006, vol. 26, pp. 1269-77.CrossRefGoogle Scholar
  3. 3.
    M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia: Prog. Mater. Sci., 2009, vol. 54, pp. 397-425.CrossRefGoogle Scholar
  4. 4.
    M. Niinomi, M. Nakai, and J. Hieda: Acta Biomater., 2012, vol. 8, pp. 3888-903.CrossRefGoogle Scholar
  5. 5.
    M. Niinomi, Y. Liu, M. Nakai, H.H. Liu, and H. Li: Regener. Biomater., 2016, vol. 3, pp. 173-85.CrossRefGoogle Scholar
  6. 6.
    D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro: Mater. Sci. Eng. A, 1998, vol. 243, pp. 244-49.CrossRefGoogle Scholar
  7. 7.
    M. Niinomi: J. Mech. Behav. Biomed. Mater., 2008, vol. 1, pp. 30-42.CrossRefGoogle Scholar
  8. 8.
    M. Niinomi, D. Kuroda, K.-i. Fukunaga, M. Morinaga, Y. Kato, T. Yashiro, and A. Suzuki: Mater. Sci. Eng. A, 1999, vol. 263, pp. 193-9.CrossRefGoogle Scholar
  9. 9.
    E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme: Biomater., 2004, vol. 25, pp. 5705-13.CrossRefGoogle Scholar
  10. 10.
    Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, and R. Yang: Acta Biomater., 2007, vol. 3, pp. 277-86.CrossRefGoogle Scholar
  11. 11.
    T.K. Jung, H. Matsumoto, T. Abumiya, N. Masahashi, M.S. Kim, and S. Hanada: Mater. Sci. Forum, 2010, vol. 631-632, pp. 205-10.Google Scholar
  12. 12.
    K. Miura, N. Yamada, S. Hanada, T.-K. Jung, and E. Itoi: Acta Biomater., 2011, vol. 7, pp. 2320-6.CrossRefGoogle Scholar
  13. 13.
    M. Niinomi, T. Narushima, and M. Nakai: Advances in Metallic Biomaterials, Springer, Heidelberg, 2015.Google Scholar
  14. 14.
    M. González, E. Salvagni, J.C. Rodríguez-Cabello, E. Rupérez, F.J. Gil, J. Peña, and J.M. Manero: J. Biomed. Mater. Res. A, 2013, vol. 101A, pp. 819-26.CrossRefGoogle Scholar
  15. 15.
    M. González, J. Peña, F.J. Gil, and J.M. Manero: Mater. Sci. Eng. C, 2014, vol. 42, pp. 691-5.CrossRefGoogle Scholar
  16. 16.
    Q. Chen, L. Liu, and S-M. Zhang: Front. Mater. Sci. China, 2010, vol. 4, pp. 34-44.CrossRefGoogle Scholar
  17. 17.
    Y.B. Wang, Y.F. Zheng, S.C Wei, and M. Li: J. Biomed. Mater. Res. B, 2011, vol. 96, pp. 34-46.CrossRefGoogle Scholar
  18. 18.
    N.B. Hua, L. Huang, W.Z. Chen, W. He, and T. Zhang: Mater. Sci. Eng. C, 2014, vol. 44, pp. 400-10.CrossRefGoogle Scholar
  19. 19.
    C. Lémaignan and A.T. Motta: Zirconium alloys in nuclear applications, In: R.W. Cahn, P. Haasen, and E.J. Kramer(eds): Materials Science and Technology vol. 10B, Wiley-VCH, Weinheim, 1994, pp. 1-51.Google Scholar
  20. 20.
    B. Cox: J. Nucl. Mater., 2005, vol. 336, pp. 331-68.CrossRefGoogle Scholar
  21. 21.
    K. Murty and I. Charit: J. Nucl. Mater., 2008, vol. 383, pp. 189-95.CrossRefGoogle Scholar
  22. 22.
    F.Y. Zhou, B.L. Wang, K.J. Qiu, H.F. Li, L. Li, Y.F. Zheng, and Y. Han: Appl. Surf. Sci., 2013, vol. 265, pp. 878-88.CrossRefGoogle Scholar
  23. 23.
    S. Guo, Y. Shang, J.M. Zhang, J.S. Zhang, Q.K. Meng, X.N. Cheng, and X.Q. Zhao: J. Alloy Compd., 2018, vol. 754, pp. 232-7.CrossRefGoogle Scholar
  24. 24.
    S. Guo, J.M. Zhang, Y. Shang, J.S. Zhang, Q.K. Meng, X.N. Cheng, and X.Q. Zhao: J. Alloy Compd., 2018, vol. 745, pp. 234-9.CrossRefGoogle Scholar
  25. 25.
    S. Banerjee and P. Mukhopadhyay: Phase Transformations: Examples from Titanium and Zirconium Alloys, Elsevier, Oxford, 2010.Google Scholar
  26. 26.
    L.L. Zhu, Q.F. Zhang, Z.Q. Chen, C.D. Wei, G.M. Cai, L. Jiang, Z.P. Jin, and J.-C. Zhao: J. Mater. Sci., 2017, vol. 52, pp. 3255-68.CrossRefGoogle Scholar
  27. 27.
    W. Zhong and J.-C. Zhao: Scr. Mater., 2017, vol. 127, pp. 92-6.CrossRefGoogle Scholar
  28. 28.
    W. Zhong and J.-C. Zhao: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5778-82.CrossRefGoogle Scholar
  29. 29.
    J. Askill and G.B. Gibbs: Phys. Status Solidi B, 1965, vol. 11, pp. 557-65.CrossRefGoogle Scholar
  30. 30.
    Y. Iijima, S.Y. Lee, and K.I. Hirano: Philos. Mag. A, 1993, vol. 68, pp. 901-14.CrossRefGoogle Scholar
  31. 31.
    L. Boltzmann: Ann. Phys., 1894, vol. 289, pp. 959-64.CrossRefGoogle Scholar
  32. 32.
    C. Matano: Jpn. J. Phys., 1933, vol. 8, pp. 109-13.Google Scholar
  33. 33.
    H. Araki, T. Yamane, Y. Minamino, S. Saji, Y. Fujiishi, and Y. Miyamoto (1993) Mater. Trans., JIM, 34, 763-70.CrossRefGoogle Scholar
  34. 34.
    J.L. Wang, L.B. Liu, B.Y. Tuo, W.M. Bai, X. Wang, X. Li, and X.P. Hu: J. Phase Equilib. Diffus., 2015, vol. 36, pp. 248-53.CrossRefGoogle Scholar
  35. 35.
    B. Chelluri, D. Lazarus, and C.A. Wert: Phys. Rev. B, 1981, vol. 23, pp. 4849-58.CrossRefGoogle Scholar
  36. 36.
    G. Neumann and C. Tuijn: Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Elsevier, Amsterdam, 2011.Google Scholar
  37. 37.
    ASM Alloy Phase Diagrams Database, P. Villars, editor-in-chief; H. Okamoto and K. Cenzual, section editors;, ASM International, Materials Park, OH, (2016).
  38. 38.
    Q.F. Zhang and J.-C. Zhao: Intermetallics, 2013, vol. 34, pp. 132-41.CrossRefGoogle Scholar
  39. 39.
    Q.F. Zhang and J.-C. Zhao: J. Alloys Compd., 2014, vol. 604, pp. 142-50.CrossRefGoogle Scholar
  40. 40.
    Q.F. Zhang, Z.Q. Chen, W. Zhong, and J.-C. Zhao: Scr. Mater., 2017, vol. 128, pp. 32-5.CrossRefGoogle Scholar
  41. 41.
    Z.Q. Chen, Z.K. Liu, and J.-C. Zhao: Metall. Mater. Trans. A, 2018, vol. 49, pp. 3108-16.CrossRefGoogle Scholar
  42. 42.
    M.E. Glicksman: Diffusion in Solids: Field Theory, Solid-State Principles, and Applications, Wiley, New York, 2000.Google Scholar
  43. 43.
    L.S. Darken: Trans. AIME, 1948, vol. 175, pp. 184-201.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Lilong Zhu
    • 1
  • Zhangqi Chen
    • 2
  • Wei Zhong
    • 2
  • Changdong Wei
    • 2
  • Gemei Cai
    • 1
    Email author
  • Liang Jiang
    • 3
  • Zhanpeng Jin
    • 1
  • Ji-Cheng Zhao
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations