Metallurgical and Materials Transactions A

, Volume 50, Issue 3, pp 1509–1521 | Cite as

In Situ Observation of High-Temperature Microstructure Evolution and Phase Transformation of 2195 Al-Li Alloy

  • Jianyu YuanEmail author
  • Jincheng Pang
  • Guojun Xie
  • Ying Wang
  • Lu Han


By using the high-temperature metallography in situ observation system (HTM IOS), the high-temperature microstructure evolution and phase transformation are investigated as well as the surface oxidation dynamics of 2195 Al-Li alloy in T8 temper. The results indicate that the main strengthening phase of the T8 raw material is T1 (Al2CuLi) phase, which gradually dissolves into the matrix at 300 °C to 400 °C, causing a drastic drop in micro-hardness. The TB phase is distributed on the grain boundaries (GBs), resulting from Cu enrichment in the thin liquid film trapped between solidified α phases. The polygonal τ2(Al7Cu2Fe) phase, on the other hand, cannot be eliminated in the heating process even if the liquidus temperature is reached. In the continuous heating scenario, the GBs start to show themselves at 300 °C to 400 °C, then coarsens and become more obvious at 400 °C to 500 °C, accompanied by the color change of the surface, which is mainly due to the surface oxidation; at last, pond-like melt appear at the triangle area among the grains, or the spots where inclusions are present when the temperature reaches 500 °C to 600 °C. Finally, the oxidation level of the 2195 Al-Li alloy’s surface is found to be dependent on the holding temperature and holding time based on the Arrhenius formula.

Supplementary material

11661_2018_5106_MOESM1_ESM.pdf (7.2 mb)
Supplementary material 1 (PDF 7340 kb)
11661_2018_5106_MOESM2_ESM.mp4 (82.4 mb)
Supplementary material 2 (MP4 84331 kb)
11661_2018_5106_MOESM3_ESM.mp4 (82.9 mb)
Supplementary material 3 (MP4 84937 kb)


  1. 1.
    X. Fan, Z. He, P. Lin and S. Yuan: Mater. Design, 2016, vol. 94, pp. 449–56.CrossRefGoogle Scholar
  2. 2.
    J. Zhang, X.S. Feng, J.S. Gao, H. Huang, Z.Q. Ma and L. J. Guo: J. Mater. Sci. Technol., 2018, vol. 34, pp. 219–27.CrossRefGoogle Scholar
  3. 3.
    T. Warner: Mater. Sci. Forum, 2006, vol. 519/521, pp. 1271–78.CrossRefGoogle Scholar
  4. 4.
    Y. Xu, X. Wang, Z. Yan and J. Li: Chinese J. Aeronaut., 2011, vol. 24, pp. 681–86.CrossRefGoogle Scholar
  5. 5.
    M. Peters and W. Bunk: J. Aircraft, 1990, vol. 27, pp. 456–58.CrossRefGoogle Scholar
  6. 6.
    C. Philip: Weld. J., 1998, vol. 77, pp. 45–47.Google Scholar
  7. 7.
    R. J. Rioja and J. Liu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3325–37.CrossRefGoogle Scholar
  8. 8.
    D. L. Chen and M.C. Chaturvedi: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2729–41.CrossRefGoogle Scholar
  9. 9.
    H. Qin, H. Zhang and H. Wu: Mater. Sci. Eng. A, 2015, vol. 626, pp. 322–29.CrossRefGoogle Scholar
  10. 10.
    X. Zhang, T. Huang, W. Yang, R. Xiao, Z. Liu and L. Li: J. Mater. Process. Tech., 2016, vol. 237, pp. 301–08.CrossRefGoogle Scholar
  11. 11.
    N. Nayan, N. P. Gurao, S.V.S. N. Murty, A. K. Jha, B. Pant, S.C. Sharma and K. M. George: Mater. Design, 2015, vol. 65, pp. 862–68.CrossRefGoogle Scholar
  12. 12.
    Y. Yang, F. Ma, H.B. Hu, Q. M. Zhang and X. W. Zhang: Mater. Sci. Eng. A, 2014, vol. 606, pp. 299–303.CrossRefGoogle Scholar
  13. 13.
    Q. Li, A. Wu, Y. Li, G. Wang, D. Yan and J. Liu: Mater. Sci. Eng. A, 2015, vol. 623, pp. 38–48.CrossRefGoogle Scholar
  14. 14.
    H. Wang, Y. Yi and S. Huang: J. Mater. Eng. Perform., 2017, vol. 26(4), pp. 1475–82.CrossRefGoogle Scholar
  15. 15.
    L. Wang, M. Hao, G. Li and G. Chen: MATEC Web Conf., 2016, vol. 67, pp. 05028.CrossRefGoogle Scholar
  16. 16.
    P.B. Prangnell and C.P. Heason: Acta Mater., 2005, vol. 53, pp. 3179–92.CrossRefGoogle Scholar
  17. 17.
    M. Rappaz, J. Drezet and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30, pp. 449–55.CrossRefGoogle Scholar
  18. 18.
    J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler and T. M. Pollock: Nature, 2017, vol. 549, pp. 365–69.CrossRefGoogle Scholar
  19. 19.
    C.A. Garcia and M.J. Bartolome: Mater. Charact., 2001, vol. 46, pp. 389–98.CrossRefGoogle Scholar
  20. 20.
    J. Safari and S. Nategh: Mater. Sci. Eng. A, 2009, vol. 499, pp. 445–53.CrossRefGoogle Scholar
  21. 21.
    X. Gao, W. Zeng, Y. Wang, Y. Long and S. Zhang: J. Alloy. and Compd., 2017, vol. 725, pp. 536–43.CrossRefGoogle Scholar
  22. 22.
    N. Jiang, X. Gao, Z. Zheng: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 740–45.CrossRefGoogle Scholar
  23. 23.
    R. Yoshimura, T.J. Konno, E. Abe, and K. Hiraga: Acta Mater., 2003, vol. 51, pp. 4251–66.CrossRefGoogle Scholar
  24. 24.
    B. Shen, L. Deng and X. Wang: Mater. Sci. Eng. A, 2015, vol. 625, pp. 288–95.CrossRefGoogle Scholar
  25. 25.
    J. H. Sander: Thin Solid Films, 1996, vol. 277, pp. 121–27.CrossRefGoogle Scholar
  26. 26.
    N.B. Pilling and R.E. Bedworth: J. Inst. Met., 1923, vol. 29, pp. 529–91.Google Scholar
  27. 27.
    S. M. Miresmaeili, Oxid. Met., 2009, vol. 71, pp. 107–23.CrossRefGoogle Scholar
  28. 28.
    M.A. Muñoz-Morris, I. Gutierrez-Urrutia, N. Calderon and D.G. Morris: Mater. Sci. Eng. A, 2008, vol. 492, pp. 268–75.CrossRefGoogle Scholar
  29. 29.
    W. A. Tayon, M. S. Domack, E. K. Hoffman and S. J. Hales: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4906–13.CrossRefGoogle Scholar
  30. 30.
    M.C. Chaturvedi and D. L. Chen: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 465–69.CrossRefGoogle Scholar
  31. 31.
    H. Sidhar and R.S. Mishra: Mater. Design, 2016, vol. 110, pp. 60–71.CrossRefGoogle Scholar
  32. 32.
    R. W. Fonda and J. F. Bingert: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3593–3604.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Jianyu Yuan
    • 1
    Email author
  • Jincheng Pang
    • 1
  • Guojun Xie
    • 1
  • Ying Wang
    • 1
  • Lu Han
    • 1
  1. 1.Aerospace Research Institute of Materials & Processing TechnologyBeijingP.R. China

Personalised recommendations