Advertisement

Synthesis and Properties of Surface-Modified Carbon Nanotube/Copper Composites

  • Jingwen Wang
  • Xiaofei Ding
  • Jingjing Zhang
  • Hongdi Zhang
  • Fan Zhang
  • Yue Liu
  • Tongxiang FanEmail author
Article
  • 20 Downloads

Abstract

Copper matrix composites with functionalized carbon nanotubes (CNTs) were synthesized using powder metallurgy with hetero-aggregation mixing and spark plasma sintering. Surface modification of the CNTs was controlled using acid oxidation with different treatment times. After a moderate treatment time of 3.5 hours, the CNTs had enough charged groups to maintain a moderate structural integrity in a CNT/Cu composite material. The prepared composite exhibited a tensile strength of 457 MPa and Vickers hardness of 130 HV, which are 1.6 and 2 times higher, respectively, than those of unreinforced copper prepared by the same method. The electrical conductivity of this composite was 92 pct IACS, which is 94 pct of that of the unreinforced copper. The carbon nanotube/copper (CNT/Cu) composites exhibited a good combination of high strength and high electrical conductivity.

Notes

Acknowledgments

We acknowledge the financial support of the National Key R&D Plan (No. 2017YFB0703101) and the National Science Fund for Distinguished Young Scholars (No. 51425203).

References

  1. 1.
    D.Mesguich, C. Arnaud, F. Lecouturier, N. Ferreira, G. Chevallier, C. Estournès, A. Weibel, C. Josse and C. Laurent: Scripta Mater., 2017, Vol. 137, pp. 78-82.CrossRefGoogle Scholar
  2. 2.
    H. Wang, Z.H. Zhang, Z.Y. Hu, F.C. Wang, S.L. Li, E. Korznikov, X.C. Zhao, Y. Liu, Z.F. Liu, and Z. Kang: Sci. Rep., 2016, vol. 6, art. no. 26258.Google Scholar
  3. 3.
    L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian and K. Lu: Science, 2004, Vol. 304, pp. 422-26.CrossRefGoogle Scholar
  4. 4.
    M. Yang, L. Weng, H.X. Zhu, T.X. Fan and D. Zhang: Carbon, 2017, Vol. 118, pp. 250-260.CrossRefGoogle Scholar
  5. 5.
    C. Arnaud, F. Lecouturier, D. Mesguich, N. Ferreira, G. Chevallier, C. Estournès, A. Weibel, A. Peigney and C. Laurent: Mater. Sci. Eng. A, 2016, Vol. 649, pp. 209-213.CrossRefGoogle Scholar
  6. 6.
    C. Arnaud, F. Lecouturier, D. Mesguich, N. Ferreira, G. Chevallier, C. Estournès, A. Weibel and C. Laurent: Carbon, 2016, Vol. 96, pp. 212-215.CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, Y.S. Li, N.R. Tao and K. Lu: Appl. Phys. Lett., 2007, Vol. 91, pp. 282-285.Google Scholar
  8. 8.
    C. Lee, X. Wei, J.W. Kysar and J. Hone: Science, 2008, Vol. 321, pp. 385-88.CrossRefGoogle Scholar
  9. 9.
    J. Marschewski, J.B. In, D. Poulikakos and C.P. Grigoropoulos: Carbon, 2014, Vol. 68, pp. 308-318.CrossRefGoogle Scholar
  10. 10.
    V.N. Popov: Mater. Sci. Eng. R, 2004, Vol. 43, pp. 61-102.CrossRefGoogle Scholar
  11. 11.
    M.M.J. Treacy, T.W. Ebbesen and J.M. Gibson: Nature, 1996, Vol. 381, pp. 678-680.CrossRefGoogle Scholar
  12. 12.
    M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly and R.S. Ruoff: Science, 2000, Vol. 287, pp. 637.CrossRefGoogle Scholar
  13. 13.
    S.R. Bakshi, D. Lahiri and A. Agarwal: Int. Mater. Rev., 2010, Vol. 55, pp. 41-64.CrossRefGoogle Scholar
  14. 14.
    B.Q. Wei, R. Vajtai and P.M. Ajayan: Appl. Phys. Lett., 2001, Vol. 79, pp. 1172-1174.CrossRefGoogle Scholar
  15. 15.
    E.W. Wong, P.E. Sheehan and C.M. Lieber: Science, 1997, Vol. 277, pp. 1971-1975.CrossRefGoogle Scholar
  16. 16.
    S.C. Tjong: Mater. Sci. Eng. R, 2013, Vol. 74, pp. 281-350.CrossRefGoogle Scholar
  17. 17.
    E. Neubauer, M. Kitzmantel, M. Hulman and P. Angerer: Compos. Sci. Technol., 2010, Vol. 70, pp. 2228-2236.CrossRefGoogle Scholar
  18. 18.
    J. Liu, M.J. Casavant, M. Cox, D.A. Walters, P. Boul, W. Lu, A.J. Rimberg, K.A. Smith, D.T. Colbert and R.E. Smalley: Chem. Phys. Lett., 1999, Vol. 303, pp. 125-129.CrossRefGoogle Scholar
  19. 19.
    G.X. Sun, G.M. Chen, J. Liu, J.P. Yang, J.Y. Xie, Z.P. Liu, R. Li and X. Li: Polymer, 2009, Vol. 50, pp. 5787-5793.CrossRefGoogle Scholar
  20. 20.
    S. Cho, K. Kikuchi and A. Kawasaki: Carbon, 2011, Vol. 49, pp. 3865-3872.CrossRefGoogle Scholar
  21. 21.
    W. Zhou, S. Sasaki and A. Kawasaki: Carbon, 2014, Vol. 78, pp. 121-129.CrossRefGoogle Scholar
  22. 22.
    W.M. Daoush, B.K. Lim, C.B. Mo, H.N. Dong and S.H. Hong: Mater. Sci. Eng. A, 2009, Vol. 513–514, pp. 247-253.CrossRefGoogle Scholar
  23. 23.
    C. Kim, B. Lim, B. Kim, U. Shim, S. Oh, B. Sung, J. Choi, J. Ki and S. Baik: Synthetic Met., 2009, Vol. 159, pp. 424-429.CrossRefGoogle Scholar
  24. 24.
    Y.R. Kang, Y.L. Li and M.Y. Deng: J. Mater. Chem., 2012, Vol. 22, pp. 16283-16287.CrossRefGoogle Scholar
  25. 25.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price and J.M. Tour: Nature, 2009, Vol. 458, pp. 872.CrossRefGoogle Scholar
  26. 26.
    J. Zhang, H.L. Zou, Q. Qing, Y.L. Yang, Q.W. Li, Z.F. Liu and X.Y. Guo: J. Phys. Chem. B, 2003, Vol. 107, pp. 3712-3718.CrossRefGoogle Scholar
  27. 27.
    Y.A. Kim, T. Hayashi, M. Endo, Y. Kaburagi, T. Tsukada, J. Shan, K. Osato and S. Tsuruoka: Carbon, 2005, Vol. 43, pp. 2243-2250.CrossRefGoogle Scholar
  28. 28.
    M. Yang, L.G. Hu, X.W. Tang, H.D. Zhang, H.X. Zhu, T.X. Fan and D. Zhang: Carbon, 2016, Vol. 110, pp. 480-489CrossRefGoogle Scholar
  29. 29.
    X.M. Sui, S. Giordani, M. Prato and H.D. Wagner: Appl. Phys. Lett., 2009, Vol. 95, pp. 233113-233113-3.CrossRefGoogle Scholar
  30. 30.
    O.K. Park, T. Jeevananda, N.H. Kim, S.I. Kim and J.H. Lee: Scripta Mater., 2009, Vol. 60, pp. 551-554.CrossRefGoogle Scholar
  31. 31.
    M. Estili and A. Kawasaki: Adv. Mater., 2010, Vol. 22, pp. 607-610.CrossRefGoogle Scholar
  32. 32.
    S. Cho, K. Kikuchi and A. Kawasaki: Acta Mater., 2012, Vol. 60, pp. 726-736.CrossRefGoogle Scholar
  33. 33.
    A.A. Sahraei, A. Fathi, M.K.B. Givi, S. Boroun and M.H. Pashaei: J. Compos. Mater., 2014, Vol. 48, pp. 3485-3497.CrossRefGoogle Scholar
  34. 34.
    I. Firkowska, A. Boden, A.M. Vogt and S. Reich: J. Mater. Chem., 2011, Vol. 21, pp. 17541-17546.CrossRefGoogle Scholar
  35. 35.
    J. Echeberria, N. Rodríguez, J. Vleugels, K. Vanmeensel, A. Reyes-Rojas, A. Garcia-Reyes, C. Domínguez-Rios, A. Aguilar-Elguézabal and M.H. Bocanegra-Bernal: Carbon, 2012, Vol. 50, pp. 706-717.CrossRefGoogle Scholar
  36. 36.
    A. Nieto, D. Lahiri and A. Agarwal: Carbon, 2012, Vol. 50, pp. 4068-4077.CrossRefGoogle Scholar
  37. 37.
    Z.H. Zhang, Z.F. Liu, J.F. Lu, X.B. Shen, F.C. Wang and Y.D. Wang: Scripta Mater. 2014, Vol. 81, pp. 56-59.CrossRefGoogle Scholar
  38. 38.
    J. Ming, Y.Q. Wu, Y.C. Yu and F.Y. Zhao: Chem. Commun. (Camb.), 2011, Vol. 47, pp. 5223-5225.CrossRefGoogle Scholar
  39. 39.
    L.G. CanaAdo, M.A. Pimenta, B.R. Neves, M.S. Dantas, and A. Jorio: Phys. Rev. Lett., 2004, vol. 93, art. no. 247401.Google Scholar
  40. 40.
    M. Boerner, H.J. Jacobasch and K. Grundke: Colloid. Surface., 1991, Vol. 58, pp. 47-59.CrossRefGoogle Scholar
  41. 41.
    M. Li, M. Boggs, T.P. Beebe and C.P. Huang: Carbon, 2008, Vol. 46, pp. 466-475.CrossRefGoogle Scholar
  42. 42.
    D. Torres, J.L. Pinilla, R. Moliner and I. Suelves: Carbon, 2015, Vol. 81, pp. 405-417.CrossRefGoogle Scholar
  43. 43.
    K.A. Wepasnick, B.A. Smith, J.L. Bitter and D.H. Fairbrother: Anal. Bioanal. Chem., 2010, Vol. 396, pp. 1003-1014.CrossRefGoogle Scholar
  44. 44.
    Z. Zhang, L. Pfefferle and G.L.Haller: Catal. Today, 2015, Vol. 249, pp. 23-29.CrossRefGoogle Scholar
  45. 45.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff: Carbon, 2007, Vol. 45, pp. 1558-1565.CrossRefGoogle Scholar
  46. 46.
    Z. Sun, J. Masa, P. Weide, S.M. Fairclough, A.W. Robertson, P. Ebbinghaus, J.H. Warner, S.C.E. Tsang, M. Muhler and W. Schuhmann: J. Mater. Chem. A, 2015, Vol. 3, pp. 15444-15450.CrossRefGoogle Scholar
  47. 47.
    H.J. Wang, A. Zhou, F. Peng, H. Yu and J. Yang: J. Colloid. Interface Sci., 2007, Vol. 316, pp. 277-283.CrossRefGoogle Scholar
  48. 48.
    W. Xia, C. Jin, S. Kundu and M. Muhler: Carbon, 2009, Vol. 47, pp. 919-922.CrossRefGoogle Scholar
  49. 49.
    C.S. Rodolfo, M.G. Aaron, V.D. Sofia, T.L. Ferdinando, L.E. Ana, P.L. Nestor, M. Hiroyuki, H. Takuya, F. Kazunori, A.K. Yoong, E. Morinobu and T. Mauricio: ACS Nano, 2013, Vol. 7, pp. 2196-2204.Google Scholar
  50. 50.
    C. Gómeznavarro, P.J. de Pablo, J. Gómezherrero, B. Biel, F.J. Garciavidal, A. Rubio and F. Flores: Nat. Mater., 2005, Vol. 4, pp. 534.CrossRefGoogle Scholar
  51. 51.
    Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner and A.F. Hebard: Science, 2004, Vol. 305, pp. 1273.CrossRefGoogle Scholar
  52. 52.
    M. Estili and A. Kawasaki: Scripta Mater., 2008, Vol. 58, pp. 906-909.CrossRefGoogle Scholar
  53. 53.
    S. Cho, K. Kikuchi, T. Miyazaki, K. Takagi, A. Kawasaki and T. Tsukada: Scripta Mater., 2010, Vol. 63, pp. 375-378.CrossRefGoogle Scholar
  54. 54.
    N. Subramanian, A. Rai and A. Chattopadhyay: Carbon, 2015, Vol. 94, pp. 661-672.CrossRefGoogle Scholar
  55. 55.
    A.K. Shukla, N. Nayan, S.V. Murty, S.C. Sharma, P. Chandran, S.R. Bakshi and K.M. George: Mater. Sci. Eng. A, 2013, Vol. 560, pp. 365-371.CrossRefGoogle Scholar
  56. 56.
    F.C. Wang, Z.H. Zhang, Y.J. Sun, Y. Liu, Z.Y. Hu, H. Wang, A.V. Korznikov, E. Korznikova, Z.F. Liu and S. Osamu: Carbon, 2015, Vol. 95, pp. 396-407.CrossRefGoogle Scholar
  57. 57.
    M.R. Akbarpour: J. Mater. Eng. Perform., 2016, Vol. 25, pp. 1-8.CrossRefGoogle Scholar
  58. 58.
    M. Meyers: Aiche J., 1970, Vol. 16, pp. 157-157.CrossRefGoogle Scholar
  59. 59.
    V.C. Nardone and K.M. Prewo: Scripta Metal., 1986, Vol. 20(1), pp. 43-48.CrossRefGoogle Scholar
  60. 60.
    H. Choi, J. Shin, B. Min, J. Park and D. Bae: J. Mater. Res., 2011, Vol. 24, pp. 2610-2616.CrossRefGoogle Scholar
  61. 61.
    S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo and S.H. Hong: Adv. Mater., 2005, Vol. 17, pp. 1377-1381.CrossRefGoogle Scholar
  62. 62.
    S.I. Cha, K.T. Kim, K.H. Lee, C.B. Mo, Y.J. Jeong and S.H. Hong: Carbon, 2008, Vol. 46, pp. 482-488.CrossRefGoogle Scholar
  63. 63.
    K. Kaneto, G. Sakai, W.Y. Cho and Y. Ando: Synthetic Met., 1999, Vol. 103, pp. 2543-2546.CrossRefGoogle Scholar
  64. 64.
    R.Z. Majw, B.Q. Wei, J. Liang and D.H. Wu: J. Mater. Sci., 1998, Vol. 33, pp. 5243-5246.CrossRefGoogle Scholar
  65. 65.
    B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi and K. Kondoh: Compos. Sci. Technol., 2015, Vol. 113, pp. 1-8.CrossRefGoogle Scholar
  66. 66.
    Z. An, M. Toda and T. Ono: Compos. Part B-Eng., 2016, Vol. 95, pp. 137-143.CrossRefGoogle Scholar
  67. 67.
    T. Varo and A. Canakci: Arab. J. Sci. Eng., 2015, Vol. 40, pp. 2711-2720.CrossRefGoogle Scholar
  68. 68.
    Y. Li, Z. Xiao, Z. Li, Z. Zhou, Z. Yang and Q. Lei: J. Alloy. Compd., 2017, Vol. 32, pp. 1324-1332.CrossRefGoogle Scholar
  69. 69.
    Q.Y. Dong, L.N. Shen, F. Cao, Y.L. Jia, K.J. Liao and M.P. Wang: J. Mater. Eng. Perform., 2015, Vol. 24, pp. 1531-1539.CrossRefGoogle Scholar
  70. 70.
    D. Shangina, Y. Maksimenkova, N. Bochvar, V. Serebryany, G. Raab, A. Vinogradov, W. Skrotzki and S. Dobatkin: J. Mater. Sci., 2016, Vol. 51, pp. 5493-5501.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Jingwen Wang
    • 1
  • Xiaofei Ding
    • 1
  • Jingjing Zhang
    • 1
  • Hongdi Zhang
    • 1
  • Fan Zhang
    • 1
  • Yue Liu
    • 1
  • Tongxiang Fan
    • 1
    Email author
  1. 1.State Key Laboratory for Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiaotong UniversityShanghaiP.R. China

Personalised recommendations