Advertisement

An Ultra-low-Carbon Steel with Outstanding Fish-Scaling Resistance and Cold Formability for Enameling Applications

  • Zaiwang Liu
  • Weidong LiEmail author
  • Xiaojing Shao
  • Yonglin Kang
  • Yiding Li
Article
  • 27 Downloads

Abstract

Developing specialized, high-performance steels for enameling is in demand as enameled steel products are finding increasingly decorative and protective applications across industries. Here, we present an ultra-low-carbon steel with excellent fish-scaling resistance and cold formability, which essentially warrant its success in enameling applications. Its fish-scaling resistance was examined by both hydrogen permeation tests and visual inspection, and was found to outperform the benchmark steel—interstitial free (IF) steel. The steel’s cold formability was evaluated with the forming limit curve (FLC), proven to be superior to the IF steel under certain loading conditions, e.g., uniaxial tension. Through integrated microscopic characterizations and thermodynamic analyses, it was confirmed that a large amount of uniformly dispersed (Ti, N), (Ti, S), (Ti, C, S), and (Ti, C) containing particles precipitated in the steel, serving as irreversible hydrogen traps and prominently contributing to its outstanding fish-scaling resistance. The possibility of further optimizing the fish-scaling resistance by refining precipitates is outlined with the aid of thermodynamic calculations.

Notes

Acknowledgments

Z.W. Liu acknowledges all the supports provided by Shougang Research Institute of Technology in the course of completing this work.

References

  1. 1.
    M. Bodaghi and A. Davarpanah: Process. Appl. Ceram., 2011, vol. 5, pp. 215-22.CrossRefGoogle Scholar
  2. 2.
    K.A. Maskall and D. White: Vitreous enamelling: a guide to modern enamelling practice, Pergamon Press, Oxford, UK, 1986.Google Scholar
  3. 3.
    J. Lawrence and L. Li: Opt. Laser. Eng., 1999, vol. 32, pp. 353-65.CrossRefGoogle Scholar
  4. 4.
    F. Dong, L. Du, X. Liu and F. Xue: Mater. Charact., 2013, vol. 84, pp. 81-7.CrossRefGoogle Scholar
  5. 5.
    E.P. DeGarmo, J.T. Black and R.A. Kohser: Materials and processes in manufacturing, 9th ed., Wiley, Hoboken, NJ, 2003.Google Scholar
  6. 6.
    S.P. Rodtsevich, S.Y. Eliseev and V.V. Tavgen: Glass Ceram., 2003, vol. 60, pp. 23-5.CrossRefGoogle Scholar
  7. 7.
    A.V. Ryabova, E.A. Yatsenko, V.V. Khoroshavina and L.V. Klimova: Glass Ceram., 2017, vol. 74, pp. 282-87.CrossRefGoogle Scholar
  8. 8.
    S. Rossi and E. Scrinzi: Chem. Eng. Process., 2013, vol. 68, pp. 74-80.CrossRefGoogle Scholar
  9. 9.
    J. Lawrence and L. Li: Surf. Coat. Technol., 2001, vol. 140, 238-43.CrossRefGoogle Scholar
  10. 10.
    A. Nishino, K. Sonetaka, K. Kimura and Y. Watanabe: U.S. Patent No. 4460630, 1984Google Scholar
  11. 11.
    E. Scrinzi and S. Rossi: Mater. Design, 2010, vol. 31, pp. 4138-46.CrossRefGoogle Scholar
  12. 12.
    M.B. Lupescu, M. Zaharescu and A. Andrei: Mater. Sci. Eng. A, 1997, vol. 232, pp. 73-9.CrossRefGoogle Scholar
  13. 13.
    G. Ling and J. He: Mater. Sci. Eng. A, 2004, vol. 379, pp. 432-36.CrossRefGoogle Scholar
  14. 14.
    X. Yang, A. Jha, R. Brydson and R.C. Cochrane: Thin Solid Films, 2003, vol. 443, pp. 33-45.CrossRefGoogle Scholar
  15. 15.
    L. Samiee, H. Sarpoolaky and A. Mirhabibi: Mater. Sci. Eng. A, 2007, vol. 458, pp. 88-95.CrossRefGoogle Scholar
  16. 16.
    A. Conde and J.J. de Damborenea: Corros. Sci., 2002, vol. 44, pp. 1555-67.CrossRefGoogle Scholar
  17. 17.
    A. Conde and J. de Damborenea: Surf. Coat. Technol., 2002, vol. 150, pp. 212-17.CrossRefGoogle Scholar
  18. 18.
    F. Tang, G. Chen, J.S. Volz, R.K. Brow and M. Koenigstein: Constr. Build. Mater., 2012, vol. 35, pp. 376-84.CrossRefGoogle Scholar
  19. 19.
    S. Rossi, C. Zanella and R. Sommerhuber: Mater. Design, 2014, vol. 55, pp. 880-87.CrossRefGoogle Scholar
  20. 20.
    S. Yılmaz, G. Bayrak, S. Sen and U. Sen: Mater. Design, 2006, vol. 27, pp. 1092-96.CrossRefGoogle Scholar
  21. 21.
    J. Pero-Sanz, M. Ruiz-Delgado, V. Martinez and J.I. Verdeja: Mater. Charact., 1999, vol. 43, pp. 303-09.CrossRefGoogle Scholar
  22. 22.
    A.B. Hadžipašic, J. Malina and Š. Nižnik: Kovove Mater., 2012, vol. 50, pp. 345-50.Google Scholar
  23. 23.
    G.H. Akbari, C.M. Sellars and J.A. Whiteman: Acta Mater., 1997, vol. 45, pp. 5047-58.CrossRefGoogle Scholar
  24. 24.
    M.Z. Quadir and B.J. Duggan: Acta Mater., 2004, vol. 52, pp. 4011-21.CrossRefGoogle Scholar
  25. 25.
    D. Wang: Appl. Surf. Sci., 2009, vol. 255, pp. 4640-45.CrossRefGoogle Scholar
  26. 26.
    R. Valentini, A. Solina, S. Matera and P. De Gregorio: Metall. Mater. Trans. A, 1996, vol. 27, pp. 3773-80.CrossRefGoogle Scholar
  27. 27.
    N. Winzer, O. Rott, R. Thiessen, I. Thomas, K. Mraczek, T. Höche, L. Wright and M. Mrovec: Mater. Des., 2016, vol. 92, 450.CrossRefGoogle Scholar
  28. 28.
    GB/T 29515-2013: Cold rolled steel sheet for Enameling-Fish-scaling sensitivity test-Hydrogen permeation method, China National Standardization Administration, 2013.Google Scholar
  29. 29.
    H. Abrams: Metallography,1971, vol. 4, pp. 59-78.CrossRefGoogle Scholar
  30. 30.
    J.W. Martin: Precipitation hardening: theory and applications, Butterworth-Heinemann, Oxford, 2012.Google Scholar
  31. 31.
    A.J. Ardell: Metall. Trans. A, 1985, vol. 16, pp. 2131-65.CrossRefGoogle Scholar
  32. 32.
    T.B. Stoughton: Int. J. Mech. Sci., 2000, vol. 42, pp. 1-27.CrossRefGoogle Scholar
  33. 33.
    Y. Zhao, X. Huang, B. Yu, X. Yuan and X. Liu: Materials, 2017, 10, 1012.CrossRefGoogle Scholar
  34. 34.
    D. Pérez, K. Verbeken, L. Duprez and M. Verhaege: Mater. Sci. Eng. A, 2012, 551, 50-58.CrossRefGoogle Scholar
  35. 35.
    W. Wan, Y.Y. Shan and K. Yang: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2147-58.Google Scholar
  36. 36.
    X. Yang, D. Vanderschueren, J. Dilewijns, C. Standaert and Y. Houbaert: ISIJ Int., 1996, vol. 36, pp. 1286-94.CrossRefGoogle Scholar
  37. 37.
    N. Yoshinaga, K. Ushioda, S. Akamatsu and O. Akisue: ISIJ Int., 1994, vol. 34, pp. 24-32.CrossRefGoogle Scholar
  38. 38.
    S.W. Ooi and G. Fourlaris: Mater. Charact. 2006, vol. 56, pp. 214-26.CrossRefGoogle Scholar
  39. 39.
    M. Hua, C.I. Garcia and A.J. DeArdo: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1769-80.CrossRefGoogle Scholar
  40. 40.
    Q. Yong: Second phases in structural steels, Metallurgical Industry Press, Beijing, 2006.Google Scholar
  41. 41.
    K.A. Taylor: Scripta Metall. Mater., 1995, vol. 32, pp. 7-12.CrossRefGoogle Scholar
  42. 42.
    E.J. Pavlina, J.G. Speer and C.J. Van Tyne: Scripta Mater., 2012, vol. 66, pp. 243-246.CrossRefGoogle Scholar
  43. 43.
    J.O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman: Calphad, 2002, vol. 26, pp. 273-312.CrossRefGoogle Scholar
  44. 44.
    F. Dong, L. Du, X. Liu and F. Xue: Acta Metall. Sin., 2013, vol. 49, pp. 1160-68.CrossRefGoogle Scholar
  45. 45.
    A.J. Ardell: Metall. Trans., 1985, vol. 16, pp. 2131-2165.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Zaiwang Liu
    • 1
    • 2
  • Weidong Li
    • 3
    • 4
    Email author
  • Xiaojing Shao
    • 2
  • Yonglin Kang
    • 1
  • Yiding Li
    • 2
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.Shougang Research Institute of TechnologyBeijingP.R. China
  3. 3.Akron Innovation CenterThe Goodyear Tire & Rubber CompanyAkronUSA
  4. 4.Department of Materials Science and EngineeringThe University of TennesseeKnoxvilleUSA

Personalised recommendations