Advertisement

Metallurgical and Materials Transactions A

, Volume 48, Issue 3, pp 1466–1473 | Cite as

In Situ Studies on Twin-Thickness-Dependent Distribution of Defect Clusters in Heavy Ion-Irradiated Nanotwinned Ag

  • Jin Li
  • Y. Chen
  • H. Wang
  • X. ZhangEmail author
Article

Abstract

Recent studies have shown that twin boundaries are effective defect sinks in heavy ion irradiated nanotwinned (nt) metals. Prior in situ radiation studies on nt Ag at room temperature indicate that the accumulative defect concentration is higher in center areas in the 60-nm-thick twins, and twin boundaries are distorted and self-heal during the absorption of different types of defect clusters. In this follow-up study, we show that the spatial distribution of accumulative defect concentrations in nt metals has a clear dependence on twin thickness, and in certain cases, the trend of spatial distribution is reversed. Potential mechanisms for the counterintuitive findings are discussed.

Keywords

Twin Boundary Dislocation Loop Defect Cluster Twin Thickness Thin Twin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge the financial support provided by NSF-DMR-Metallic Materials and Nanostructures Program under Grant No. 1643915. HW acknowledges the support from the U.S. Office of Naval Research (N00014-16-1-2778). We also acknowledge the access of microscopes at the Microscopy and Imaging Center at Texas A&M University and the DoE Center for Integrated Nanotechnologies managed by Los Alamos National Laboratory. The IVEM facility at Argonne National Laboratory is supported by DOE-Office of Nuclear Energy.

Supplementary material

Supplementary material 1 (MP4 9480 kb)

Supplementary material 2 (MP4 7586 kb)

11661_2016_3895_MOESM3_ESM.tif (1.9 mb)
Illustration the process for acquiring accumulative defects within 0.005 dpa in thick twins (t ≈ 80 nm) in nt Ag (refer to Suppl. Video 1). (a) Before radition the twin matrix is relatively clean. (b) After radiated for 0.0007 dpa, a few defects were formed. The red circles in (b) indicate those defects captured in the snap shot at the dose of 0.005 dpa (g). The purple circles in (b) indicate the defects which do not overlap with red circles, in other words, those defects generated during 0–0.0007 dpa but disappeared before reached to 0.005 dpa. The same method has been used in (c through f) but the only difference is that the circles from previous stages are also included. For instance, both the red circles (from (g)) and the purple circles (from (b)) are showed in (c), and the green circles indicate those defects generated during 0.0007–0.0016 dpa. Finally, (h) shows the total number of defects that detected during 0–0.005 dpa (Fig. 3e). Here, all colored circles except the red ones were recolored into blue so that the blue circles indicate the overall defects accumulated during 0.005 dpa but not appeared at 0.005 dpa as shown in Fig. 3d. Supplementary material 3 (TIFF 1915 kb)
11661_2016_3895_MOESM4_ESM.tif (2.4 mb)
Illustration the process for acquiring accumulative defects within 0.005 dpa in thick twins (t ≈ 20 nm) in nt Ag (refer to Suppl. Video 2). The method used is exactly the same as shown in Suppl. Fig. 1. The TEM snapshot at 0 dpa is not shown in this case, and instead, the defect accumulative appearance frequency as a function of its position is plotted here (h). Compare to Fig. 3f, the trend of distribution when t ≈ 20 nm is reversed. Supplementary material 4 (TIFF 2485 kb)

References

  1. 1.
    S. J. Zinkle, L. E. Seitzman, W. G. Wolfer: Philos. Mag. A, 1987, vol. 55, pp. 111–25.CrossRefGoogle Scholar
  2. 2.
    B. N. Singh, S. J. Zinkle: J. Nucl. Mater., 1993, vol. 206, pp. 212–29.CrossRefGoogle Scholar
  3. 3.
    B. N. Singh, S. I. Golubov, H. Trinkaus, D. J. Edwards, M. Eldrup: J. Nucl. Mater., 2004, vol. 328, pp. 77–87.CrossRefGoogle Scholar
  4. 4.
    R. E. Stoller, G. R. Odette, B. D. Wirth: J. Nucl. Mater., 1997, vol. 251, pp. 49–60.CrossRefGoogle Scholar
  5. 5.
    G. R. Odette, M. J. Alinger, B. D. Wirth: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 471–503.CrossRefGoogle Scholar
  6. 6.
    R. W. Grimes, R. J. M. Konings, L. Edwards: Nat. Mater., 2008, vol. 7, pp. 683–85.CrossRefGoogle Scholar
  7. 7.
    L. K. Mansur, A. F. Rowcliffe, R. K. Nanstad, S. J. Zinkle, W. R. Corwin, R. E. Stoller: J. Nucl. Mater., 2004, vol. 329-333, pp. 166–72.CrossRefGoogle Scholar
  8. 8.
    S. J. Zinkle: Phys. Plasmas, 2005, vol. 12, pp. 058101.CrossRefGoogle Scholar
  9. 9.
    Y. Chen, K. Y. Yu, Y. Liu, S. Shao, H. Wang, M. A. Kirk, J. Wang, X. Zhang: Nat. Commun., 2015, vol. 6, pp. 7036.CrossRefGoogle Scholar
  10. 10.
    Y. Chen, Y. Liu, E. G. Fu, C. Sun, K. Y. Yu, M. Song, J. Li, Y. Q. Wang, H. Wang, X. Zhang: Acta Mater., 2015, vol. 84, pp. 393–404.CrossRefGoogle Scholar
  11. 11.
    C. Sun, D. Bufford, Y. Chen, M. A. Kirk, Y. Q. Wang, M. Li, H. Wang, S. A. Maloy, X. Zhang: Sci. Rep., 2014, vol. 4, pp. 3737.Google Scholar
  12. 12.
    M. Song, Y. D. Wu, D. Chen, X. M. Wang, C. Sun, K. Y. Yu, Y. Chen, L. Shao, Y. Yang, K. T. Hartwig, X. Zhang: Acta Mater., 2014, vol. 74, pp. 285–95.CrossRefGoogle Scholar
  13. 13.
    M. Caro, W. M. Mook, E. G. Fu, Y. Q. Wang, C. Sheehan, E. Martinez, J. K. Baldwin: A. Caro, Appl. Phys. Lett., 2014, vol. 104, pp. 109–233.CrossRefGoogle Scholar
  14. 14.
    K. Y. Yu, D. Bufford, C. Sun, Y. Liu, H. Wang, M. A. Kirk, M. Li, X. Zhang: Nat. Commun., 2013, vol. 4, pp. 1377.CrossRefGoogle Scholar
  15. 15.
    C. Sun, M. Song, K. Y. Yu, Y. Chen, M. Kirk, M. Li, H. Wang, X. Zhang: Metall. Trans. A, 2013, vol. 44, pp. 1966–74.CrossRefGoogle Scholar
  16. 16.
    K. Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E. G. Fu, X. Zhang: J. Nucl. Mater., 2012, vol. 425, pp. 140–46.CrossRefGoogle Scholar
  17. 17.
    M. J. Demkowicz, A. Misra, A. Caro: Curr. Opin. Solid State Mater. Sci., 2012, vol. 16, pp. 101–108.CrossRefGoogle Scholar
  18. 18.
    E. M. Bringa, J. D. Monk, A. Caro, A. Misra, L. Zepeda-Ruiz, M. Duchaineau, F. Abraham, M. Nastasi, S. T. Picraux, Y. Q. Wang, D. Farkas: Nano Lett., 2012, vol. 12, pp. 3351–55.CrossRefGoogle Scholar
  19. 19.
    Y. Chen, J. Li, K. Y. Yu, H. Wang, M. A. Kirk, M. Li, X. Zhang: Acta Mater., 2016, vol. 111, pp. 148–56.CrossRefGoogle Scholar
  20. 20.
    C. Sun, B. P. Uberuaga, L. Yin, J. Li, Y. Chen, M. A. Kirk, M. Li, S. A. Maloy, H. Wang, C. Yu, X. Zhang: Acta Mater., 2015, vol. 95, pp. 156–63.CrossRefGoogle Scholar
  21. 21.
    Y. Chen, N. Li, D. C. Bufford, J. Li, K. Hattar, H. Wang, X. Zhang: J. Nucl. Mater., 2016, vol. 475, pp. 274–79.CrossRefGoogle Scholar
  22. 22.
    X.-M. Bai, A. F. Voter, R. G. Hoagland, M. Nastasi, B. P. Uberuaga: Science, 2010, vol. 327, pp. 1631–34.CrossRefGoogle Scholar
  23. 23.
    B. N. Singh, A. J. E. Foreman: Phil. Mag., 1974, vol. 29, pp. 847–58.CrossRefGoogle Scholar
  24. 24.
    W. Z. Han, M. J. Demkowicz, E. G. Fu, Y. Q. Wang, A. Misra: Acta Mater., 2012, vol. 60, pp. 6341–51.CrossRefGoogle Scholar
  25. 25.
    C. Jiang, N. Swaminathan, J. Deng, D. Morgan, I. Szlufarska: Mater. Res. Lett., 2014, vol. 2, pp. 100–6.CrossRefGoogle Scholar
  26. 26.
    Y. Chen, L. Jiao, C. Sun, M. Song, K. Y. Yu, Y. Liu, M. Kirk, M. Li, H. Wang, X. Zhang: J. Nucl. Mater., 2014, vol. 452, pp. 321–7.CrossRefGoogle Scholar
  27. 27.
    K. Y. Yu, C. Sun, Y. Chen, Y. Liu, H. Wang, M. A. Kirk, M. Li, X. Zhang: Philos. Mag., 2013, vol. 93, pp. 3547–62.CrossRefGoogle Scholar
  28. 28.
    X. Zhang, N. Li, O. Anderoglu, H. Wang, J. G. Swadener, T. Höchbauer, A. Misra, R. G. Hoagland: Nucl. Instrum. Methods Phys. Res., Sect. B, 2007, vol. 261, pp. 1129–32.CrossRefGoogle Scholar
  29. 29.
    A. Misra, M. J. Demkowicz, X. Zhang, R. G. Hoagland: JOM, 2007, vol. 59, pp. 62–65.CrossRefGoogle Scholar
  30. 30.
    E. G. Fu, M. Caro, L. A. Zepeda-Ruiz, Y. Q. Wang, K. Baldwin, E. Bringa, M. Nastasi, A. Caro: Appl. Phys. Lett., 2012, vol. 101, pp. 191–607.Google Scholar
  31. 31.
    M. J. Demkowicz, O. Anderoglu, X. Zhang, A. Misra: J. Mater. Res., 2011, vol. 26, pp. 1666–75.CrossRefGoogle Scholar
  32. 32.
    M. Niewczas, R. G. Hoagland: Philos. Mag., 2009, vol. 89, pp. 727–46.CrossRefGoogle Scholar
  33. 33.
    K. Y. Yu, D. Bufford, F. Khatkhatay, H. Wang, M. A. Kirk, X. Zhang: Scr. Mater., 2013, vol. 69, pp. 385–88.CrossRefGoogle Scholar
  34. 34.
    J. Li, K. Y. Yu, Y. Chen, M. Song, H. Wang, M. A. Kirk, M. Li, X. Zhang: Nano Lett., 2015, vol. 15, pp. 2922–27.CrossRefGoogle Scholar
  35. 35.
    D. Bufford, H. Wang, X. Zhang: Acta Mater., 2011, vol. 59, pp. 93–101.CrossRefGoogle Scholar
  36. 36.
    Zinkle S. J. (2012) Radiation-Induced Effects on Microstructure. In Rudy J. M Konings (ed.). Comprehensive Nuclear Materials, Elsevier, Oxford, p. 65–98.CrossRefGoogle Scholar
  37. 37.
    R. Sizmann: J. Nucl. Mater., 1978, vol. 69, pp. 386–412.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Los Alamos National LaboratoryMPA-CINTLos AlamosUSA
  3. 3.Department of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.School of Materials EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations