Advertisement

A High-Speed Imaging and Modeling Study of Dendrite Fragmentation Caused by Ultrasonic Cavitation

  • 1768 Accesses

  • 70 Citations

Abstract

The dynamic behavior of ultrasound-induced cavitation bubbles and their effect on the fragmentation of dendritic grains of a solidifying succinonitrile 1 wt pct camphor organic transparent alloy have been studied experimentally using high-speed digital imaging and complementary numerical analysis of sound wave propagation, cavitation dynamics, and the velocity field in the vicinity of an imploding cavitation bubble. Real-time imaging and analysis revealed that the violent implosion of bubbles created local shock waves that could shatter dendrites nearby into small pieces in a few tens of milliseconds. These catastrophic events were effective in breaking up growing dendritic grains and creating abundant fragmented crystals that may act as embryonic grains; therefore, these events play an important role in grain refinement of metallurgical alloys.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts, 1st ed., Gordon and Breach Science Publishers, Amsterdam, the Netherlands, 1998.

  2. 2.

    X. Jian, H. Xu, T.T. Meek, and Q. Han: Mater. Lett., 2005, vol. 59, pp. 190–93.

  3. 3.

    X. Liu, Y. Osawa, S. Takamori, and T. Mukai: Mater. Sci. Eng. A, 2008, vol. 487, pp. 120–23.

  4. 4.

    D. Gao, Z. Li, Q. Han, and Q. Zhai: Mater. Sci. Eng. A, 2009, vol. 502, pp. 2–5.

  5. 5.

    O.V. Abramov: Ultrasonics, 1987, vol. 25, pp. 73–82.

  6. 6.

    Q. Liu, Q. Zhai, F. Qi, and Y. Zhang: Mater. Lett., 2007, vol. 61, pp. 2422–25.

  7. 7.

    T.V. Atamanenko, D.G. Eskin, L. Zhang, and L. Katgerman: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2056–66.

  8. 8.

    M. Qian and A. Ramirez: J. Appl. Phys., 2009, vol. 105, pp. 013538.1–013538.6.

  9. 9.

    G.I. Eskin: Metallurgist, 2003, vol. 47, pp. 265–72.

  10. 10.

    R. Hickling: Nature, 1965, vol. 206, pp. 915–17.

  11. 11.

    J.D. Hunt and K.A. Jackson: J. Appl. Phys., 1966, vol. 37, pp. 254–57.

  12. 12.

    C.J. Paradies, R.N. Smith, and M.E. Glicksman: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 875–83.

  13. 13.

    T. Li, X. Lin, and W. Huang: Acta Mater., 2006, vol. 54, pp. 4815–24.

  14. 14.

    W.L. Wang, K.S. Wang, and X. Lin: Int. J. Cast Met. Res., 2010, vol. 23, pp. 344–48.

  15. 15.

    G.M. Swallowe, J.E. Field, C.S. Rees, and A. Duckworth: Acta Metall., 1989, vol. 37, pp. 961–67.

  16. 16.

    R. Chow, R. Blindt, R. Chivers, and M. Povey: Ultrasonics, 2003, vol. 41, pp. 595–604.

  17. 17.

    R. Chow, R. Blindt, A. Kamp, P. Grocutt, and R. Chivers: Ultrason. Sonochem., 2004, vol. 11, pp. 245–50.

  18. 18.

    R.M. Wagterveld, L. Boels, M.J. Mayer, and G.J. Witkamp: Ultrason. Sonochem., 2011, vol. 18, pp. 216–25.

  19. 19.

    B.W. Zeiger and K.S. Suslick: J. Am. Chem. Soc., 2011, vol. 133, pp. 14530–33.

  20. 20.

    R. Pecha and B. Gompf: Phys. Rev. Lett., 2000, vol. 84, pp. 1328–30.

  21. 21.

    K.S. Suslick: Encyclopedia of Physical Science and Technology, Academic Press Inc., San Diego, CA, 2001, pp. 363–76.

  22. 22.

    J. Campbell: Int. Met. Rev., 1981, vol. 26, pp. 71–108.

  23. 23.

    A. Hellawell, S. Liu, and S.Z. Lu: JOM, 1997, vol. 49, pp. 18–20.

  24. 24.

    D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, L. Arnberg, and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 4287–92.

  25. 25.

    A. Ludwig and W. Kurz: Acta Mater., 1996, vol. 44, pp. 3643–54.

  26. 26.

    P. Tin, D. Frate, and H.C. de Groh III: Int. J. Thermophys., 2001, vol. 22, pp. 557–68.

  27. 27.

    M. Serefoglu and R.E. Napolitano: Acta Mater., 2008, vol. 56, pp. 3862–73.

  28. 28.

    J. Klima, A. Frias-Ferrer, J. Gonzalez-Garcia, J. Ludvik, V. Saez, and J. Iniesta: Ultrason. Sonochem., 2007, vol. 14, pp. 19–28.

  29. 29.

    F.R. Gilmore: Hydrodynamics Laboratory Report 26-4, California Institute of Technology, Pasadena, CA, 1952.

  30. 30.

    V. Minsier and J. Proost: Ultrason. Sonochem., 2008, vol. 15, pp. 598–604.

  31. 31.

    Y. Lee, S. Karng, J. Jeon, and H. Kwak: J. Phys. Soc. Jap., 1997, vol. 66, pp. 2537–40.

  32. 32.

    J. Holzfuss: Phys. Rev. Lett., 1998, vol. 81, pp. 5434–37.

  33. 33.

    J. Pilling and A. Hellawell: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 229–32.

  34. 34.

    A. Vogel, R.D. Doherty, and B. Cantor: Solidification and Casting of Metals, TMS, London, U.K., 1979, pp. 518–25.

Download references

Acknowledgments

The authors would like to thank the financial support from the National Natural Science Foundation of China (Nos. 50825401 and 51174135), the National Basic Research Program of China (No. 2012CB619505), the U.K. Royal Society (International Joint Project 2007/R4, Research Grants 2010 R2 and an Industry Fellowship award), and the U.K. Engineering and Physical Sciences Research Council Centre for Liquid Metal Engineering (Grant No. EP/H026177/1).

Author information

Correspondence to Da Shu.

Additional information

Manuscript submitted September 27, 2011.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 3 (AVI 2092 kb)

Supplementary material 1 (AVI 5675 kb)

Supplementary material 2 (AVI 8480 kb)

Supplementary material 3 (AVI 2092 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shu, D., Sun, B., Mi, J. et al. A High-Speed Imaging and Modeling Study of Dendrite Fragmentation Caused by Ultrasonic Cavitation. Metall and Mat Trans A 43, 3755–3766 (2012) doi:10.1007/s11661-012-1188-3

Download citation

Keywords

  • Cavitation
  • Acoustic Pressure
  • Cavitation Bubble
  • Ultrasonic Probe
  • Bubble Wall