Archives of Osteoporosis

, 14:18 | Cite as

Automated quantitative morphometry of vertebral heights on spinal radiographs: comparison of a clinical workflow tool with standard 6-point morphometry

  • Klaus EngelkeEmail author
  • B. Stampa
  • P. Steiger
  • T. Fuerst
  • H. K. Genant
Original Article



A workflow tool for measurements of vertebral heights on lateral spine radiographs based on automated placements of 6 points per vertebra was evaluated. The tool helps to standardize point placement among operators. Its success rate is very good in normal vertebrae but lower in vertebrae with more severe fractures. Manual corrections were required in 192 of 1257 analyzed vertebrae.


To evaluate a new workflow tool (SA) for the automated measurements of vertebral heights on lateral spine radiographs.


Lateral radiographs from 200 postmenopausal women were evaluated at two visits. Genant’s semi-quantitative fracture assessment (SQ) and manual quantitative morphometry (QM) results were available from prior analyses. Vertebral heights from point placements using SA were compared with manual 6-point placement QM. Differences were quantified as RMS coefficient of variations (rmsCV) and standard deviations (rmsSD).

Results and conclusions

SA required manual corrections in 192 of 1257 vertebrae. SA heights were larger than QM ones by 2.2–3.6%. Correlations (r2 > 0.92) between SA and QM were very high. Differences between QM and SA were higher for fractured (SQ = 2; rmsCV% 14.5%) than for unfractured vertebrae (rmsCV% 4.2–4.7%). rmsCV% for QM varied between 3 and 6% and for SA between 2.5 and 7.5%. For SA, highest rmsCV% was obtained for T4 and L4. Manual correction mostly affected the end vertebrae T4 and L4. SA helps to standardize point placement among operators. The algorithm success rate is very good in normal vertebrae but lower in vertebrae with more severe fractures, which are of greater clinical interest but are more readily recognized without morphometric measurements.


Active shape and appearance models Automated quantitative morphometry Vertebral fracture 



Preliminary results have been presented at the ASBMR 2010 and 2011 and at the ESCEO-IOF 2010 and 2011.

Compliance with ethical standards

Conflicts of interest


Supplementary material

11657_2019_577_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2191 kb)


  1. 1.
    Almehmi A, Deliri H, Dameron J, Pfister AK (2005) Fracture of the osteoporotic cervical spine from a low-level trauma. W V Med J 101(2):71–72PubMedGoogle Scholar
  2. 2.
    Premaor MO, Pilbrow L, Tonkin C, Adams M, Parker RA, Compston J (2010) Low rates of treatment in postmenopausal women with a history of low trauma fractures: results of audit in a Fracture Liaison Service. QJM 103(1):33–40CrossRefGoogle Scholar
  3. 3.
    Chevalley T, Hoffmeyer P, Bonjour JP, Rizzoli R (2002) An osteoporosis clinical pathway for the medical management of patients with low-trauma fracture. Osteoporos Int 13(6):450–455CrossRefGoogle Scholar
  4. 4.
    Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, De Laet C, Jonsson B (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int 11(8):669–674CrossRefGoogle Scholar
  5. 5.
    Melton LJ 3rd, Atkinson EJ, O'Connor MK, O'Fallon WM, Riggs BL (1998) Bone density and fracture risk in men. J Bone Miner Res 13(12):1915–1923CrossRefGoogle Scholar
  6. 6.
    Melton LJ 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL (1992) Perspective. How many women have osteoporosis? J Bone Miner Res 7(9):1005–1010CrossRefGoogle Scholar
  7. 7.
    Papaioannou A, Morin S, Cheung AM, Atkinson S, Brown JP, Feldman S, Hanley DA, Hodsman A, Jamal SA, Kaiser SM, Kvern B, Siminoski K, Leslie WD (2010) 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ 182(17):1864–1873CrossRefGoogle Scholar
  8. 8.
    Foundation IO. Europe guidelines
  9. 9.
    Australia TRACoGPaO (2017) Osteoporosis prevention, diagnosis and management in postmenopausal women and men over 50 years of age. 2nd edn.
  10. 10.
    Densitometry ISfC. 2015 ISCD official positions—adult.
  11. 11.
    Pasco JA, Seeman E, Henry MJ, Merriman EN, Nicholson GC, Kotowicz MA (2006) The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos Int 17(9):1404–1409CrossRefGoogle Scholar
  12. 12.
    Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD (2005) Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res 20(10):1813–1819CrossRefGoogle Scholar
  13. 13.
    Dawson-Hughes B, Tosteson AN, Melton LJ 3rd, Baim S, Favus MJ, Khosla S, Lindsay RL, National Osteoporosis Foundation Guide C (2008) Implications of absolute fracture risk assessment for osteoporosis practice guidelines in the USA. Osteoporos Int 19(4):449–458CrossRefGoogle Scholar
  14. 14.
    Leslie WD, Manitoba Bone Density Program C (2008) Absolute fracture risk reporting in clinical practice: a physician-centered survey. Osteoporos Int 19(4):459–463CrossRefGoogle Scholar
  15. 15.
    Siris E, Delmas PD (2008) Assessment of 10-year absolute fracture risk: a new paradigm with worldwide application. Osteoporos Int 19(4):383–384CrossRefGoogle Scholar
  16. 16.
    Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397CrossRefGoogle Scholar
  17. 17.
    Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35(2):375–382CrossRefGoogle Scholar
  18. 18.
    Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381CrossRefGoogle Scholar
  19. 19.
    Cooper C, Atkinson E, O'Fallon W, III LM (1992) Incidence of clinically diagnosed vertebral fracture: a population-based study in Rochester, Minnesota. J Bone Miner Res 7(2):221–227CrossRefGoogle Scholar
  20. 20.
    Delmas PD, van de Langerijt L, Watts NB, Eastell R, Genant H, Grauer A, Cahall DL, Group IS (2005) Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 20(4):557–563CrossRefGoogle Scholar
  21. 21.
    Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 11(7):984–996CrossRefGoogle Scholar
  22. 22.
    Wu CY, Li J, Jergas M, Genant HK (1995) Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporosis Int 5:354–370CrossRefGoogle Scholar
  23. 23.
    Genant HK, Wu CY, van Kuijk C, Nevitt M (1993) Vertebral fracture assessment using a semi-quantitative technique. J Bone Miner Res:81137–81148Google Scholar
  24. 24.
    Boonen S, Adachi JD, Man Z, Cummings SR, Lippuner K, Torring O, Gallagher JC, Farrerons J, Wang A, Franchimont N, San Martin J, Grauer A, McClung M (2011) Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J Clin Endocrinol Metab 96(6):1727–1736CrossRefGoogle Scholar
  25. 25.
    Eriksen EF, Lyles KW, Colon-Emeric CS, Pieper CF, Magaziner JS, Adachi JD, Hyldstrup L, Recknor C, Nordsletten L, Lavecchia C, Hu H, Boonen S, Mesenbrink P (2009) Antifracture efficacy and reduction of mortality in relation to timing of the first dose of zoledronic acid after hip fracture. J Bone Miner Res 24(7):1308–1313CrossRefGoogle Scholar
  26. 26.
    Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, Christiansen C, Delmas PD, Zanchetta JR, Stakkestad J, Gluer CC, Krueger K, Cohen FJ, Eckert S, Ensrud KE, Avioli LV, Lips P, Cummings SR (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. Jama 282(7):637–645CrossRefGoogle Scholar
  27. 27.
    Quandt SA, Thompson DE, Schneider DL, Nevitt MC, Black DM, Fracture Intervention Trial Research G (2005) Effect of alendronate on vertebral fracture risk in women with bone mineral density T scores of − 1.6 to − 2.5 at the femoral neck: the Fracture Intervention Trial. Mayo Clin Proc 80(3):343–349CrossRefGoogle Scholar
  28. 28.
    Jiang G, Eastell R, Barrington NA, Ferrar L (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15(11):887–896CrossRefGoogle Scholar
  29. 29.
    Jiang G, Luo J, Pollintine P, Dolan P, Adams MA, Eastell R (2010) Vertebral fractures in the elderly may not always be “osteoporotic”. Bone 47(1):111–116CrossRefGoogle Scholar
  30. 30.
    Cawthon PM, Haslam J, Fullman R, Peters KW, Black D, Ensrud KE, Cummings SR, Orwoll ES, Barrett-Connor E, Marshall L, Steiger P, Schousboe JT, Osteoporotic Fractures in Men Research G (2014) Methods and reliability of radiographic vertebral fracture detection in older men: the osteoporotic fractures in men study. Bone:67152–67155Google Scholar
  31. 31.
    Roberts M, Cootes TF, Adams JE (2006) Vertebral morphometry: semiautomatic determination of detailed shape from dual-energy X-ray absorptiometry images using active appearance models. Investig Radiol 41(12):849–859CrossRefGoogle Scholar
  32. 32.
    Roberts MG, Cootes TF, Adams JE (2005) Vertebral shape: automatic measurement with dynamically sequenced active appearance models. Med Image Comput Comput Assist Interv 8(Pt 2):733–740PubMedGoogle Scholar
  33. 33.
    Brett A, Miller CG, Hayes CW, Krasnow J, Ozanian T, Abrams K, Block JE, van Kuijk C (2009) Development of a clinical workflow tool to enhance the detection of vertebral fractures: accuracy and precision evaluation. Spine (Phila Pa 1976) 34(22):2437–2443CrossRefGoogle Scholar
  34. 34.
    van der Velde R, Ozanian T, Dumitrescu B, Haslam J, Staal J, Brett A, van den Bergh J, Geusens P (2015) Performance of statistical models of shape and appearance for semiautomatic segmentations of spinal vertebrae T4–L4 on digitized vertebral fracture assessment images. Spine J 15(6):1248–1254CrossRefGoogle Scholar
  35. 35.
    Black DM, Palermo L, Nevitt MC, Genant HK, Christensen L, Cummings SR (1999) Defining incident vertebral deformity: a prospective comparison of several approaches. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14(1):90–101CrossRefGoogle Scholar
  36. 36.
    Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, Trial HPF (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–1822CrossRefGoogle Scholar
  37. 37.
    Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5(4):262–270CrossRefGoogle Scholar
  38. 38.
    Vokes T, Lentle B (2016) The ISCD and vertebral fractures. J Clin Densitom 19(1):5–7CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2019

Authors and Affiliations

  • Klaus Engelke
    • 1
    • 2
    • 3
    Email author
  • B. Stampa
    • 2
  • P. Steiger
    • 4
  • T. Fuerst
    • 3
  • H. K. Genant
    • 5
  1. 1.Institute of Medical PhysicsUniversity of ErlangenErlangenGermany
  2. 2.Bioclinica Inc.HamburgGermany
  3. 3.Department of MedicineUniversity Hospital, University of Erlangen-NürnbergErlangenGermany
  4. 4.PAREXEL InternationalWalthamUSA
  5. 5.Department of RadiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations