Advertisement

Archives of Osteoporosis

, 13:119 | Cite as

Changes in bone mineral density in women before critical illness: a matched control nested cohort study

  • Neil R. OrfordEmail author
  • Michael Bailey
  • Rinaldo Bellomo
  • Julie A. Pasco
  • David J. Cooper
  • Mark A. Kotowicz
Original Article

Abstract

Summary

The contribution of premorbid bone health to accelerated bone loss following critical illness is unknown. This study compared bone density in women before critical illness to women who did not become critically ill. Overall bone density was similar, although femoral neck bone mass increased immediately prior to critical illness.

Purpose

The relative contribution of acute and chronic factors to accelerated loss of bone mineral density (BMD) following critical illness is unknown. This study compared the BMD trajectory of women before critical illness to the BMD trajectory of women who did not become critically ill.

Methods

This prospective, nested, age- and medication-matched, case-control study compared trajectory of BMD in women in the Geelong Osteoporosis study (GOS) requiring admission to an Australian Intensive Care Unit (ICU) between June 1998 and March 2016, to women not admitted to ICU. The main outcome was age and medication use adjusted change in BMD.

Results

A total of 52 women, with a mean age of 77 ± 9 years were admitted to ICU, predominantly post-surgery (75%), during the study period. A greater age-adjusted annual rate of decline was observed for pre-ICU women compared to no-ICU women for AP spine BMD (−0.010 ± 0.002 g/cm2 vs −0.005 ± 0.002 g/cm2, p = 0.01) over the 15-year study period. In participants with multiple BMDs 2 years before critical illness, a significantly greater increase in femoral neck BMD compared to age- and medication-matched controls was observed (difference in BMD, ICU vs no-ICU = 0.037 ± 0.013 g/cm2, p = 0.006).

Conclusion

In a cohort of women with predominantly surgical ICU admission, bone health prior to critical illness was comparable to age- and medication-matched controls, with a relative increase in femoral neck bone mass immediately prior to critical illness. These findings suggest critical illness-related bone loss cannot be entirely explained as a continuation of pre-morbid bone trajectory.

Keywords

Critical illness Long-term outcomes Osteoporosis Fracture Bone loss Bone mineral density 

Notes

Author’s contribution

Substantial contributions to the conception (NO, RB, DC, MB, JP, MK) or design (NO, MB, JP, RB, DC, MK) of the work; or the acquisition, analysis, or interpretation of data (NO, MB, JP, RB, DC, MK) for the work.

Drafting the work or revising it critically for important intellectual content (NO, MB, JP, RB, DC, MK).

Final approval of the version to be published (NO, MB, JP, RB, DC, MK).

Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. (NO, MB, JP, RB, DC, MK).

Compliance with ethical standards

Conflict of interest

None.

Supplementary material

11657_2018_533_MOESM1_ESM.docx (245 kb)
ESM 1 (DOCX 245 kb)

References

  1. 1.
    Orford N, Cattigan C, Brennan SL, Kotowicz M, Pasco J, Cooper DJ (2014) The association between critical illness and changes in bone turnover in adults: a systematic review. Osteoporos Int 25(10):2335–2346.  https://doi.org/10.1007/s00198-014-2734-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Orford NR, Lane SE, Bailey M, Pasco JA, Cattigan C, Elderkin T, Brennan-Olsen SL, Bellomo R, Cooper DJ, Kotowicz MA (2016) Changes in bone mineral density in the year after critical illness. Am J Respir Crit Care Med 193(7):736–744.  https://doi.org/10.1164/rccm.201508-1514OC CrossRefPubMedGoogle Scholar
  3. 3.
    Orford NR, Bailey M, Bellomo R, Pasco JA, Cattigan C, Elderkin T, Brennan-Olsen SL, Cooper DJ, Kotowicz MA (2017) The association of time and medications with changes in bone mineral density in the 2 years after critical illness. Crit Care 21(1):69.  https://doi.org/10.1186/s13054-017-1657-6 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Orford NR, Saunders K, Merriman E, Henry M, Pasco J, Stow P, Kotowicz M (2011) Skeletal morbidity among survivors of critical illness. Crit Care Med 39(6):1295–1300.  https://doi.org/10.1097/CCM.0b013e318211ff3d CrossRefPubMedGoogle Scholar
  5. 5.
    Ferrante LE, Pisani MA, Murphy TE, Gahbauer EA, Leo-Summers LS, Gill TM (2015) Functional trajectories among older persons before and after critical illness. JAMA Intern Med 175(4):523–527.  https://doi.org/10.1001/jamainternmed.2014.7889 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pasco JA, Nicholson GC, Kotowicz MA (2012) Cohort profile: Geelong Osteoporosis Study. Int J Epidemiol 41(6):1565–1575.  https://doi.org/10.1093/ije/dyr148 CrossRefPubMedGoogle Scholar
  7. 7.
    Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359(9320):1841–1850.  https://doi.org/10.1016/S0140-6736(02)08706-8 CrossRefPubMedGoogle Scholar
  8. 8.
    Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367(9527):2010–2018.  https://doi.org/10.1016/S0140-6736(06)68891-0 CrossRefPubMedGoogle Scholar
  9. 9.
    Henry MJ, Pasco JA, Nicholson GC, Seeman E, Kotowicz MA (2000) Prevalence of osteoporosis in Australian women: Geelong Osteoporosis Study. J Clin Densitom 3(3):261–268CrossRefGoogle Scholar
  10. 10.
    Nierman DM, Mechanick JI (1998) Bone hyperresorption is prevalent in chronically critically ill patients. Chest 114(4):1122–1128CrossRefGoogle Scholar
  11. 11.
    Lind L, Carlstedt F, Rastad J, Stiernström H, Stridsberg M, Ljunggren Ö, Wide L, Larsson A, Hellman P, Ljunghall S (2000) Hypocalcemia and parathyroid hormone secretion in critically ill patients. Crit Care Med 28(1):93–99CrossRefGoogle Scholar
  12. 12.
    Nierman DM, Mechanick JI (2000) Biochemical response to treatment of bone hyperresorption in chronically critically ill patients. Chest 118(3):761–766CrossRefGoogle Scholar
  13. 13.
    Van den Berghe G, Baxter RC, Weekers F et al (2002) The combined administration of GH-releasing peptide-2 (GHRP-2), TRH and GnRH to men with prolonged critical illness evokes superior endocrine and metabolic effects compared to treatment with GHRP-2 alone. Clin Endocrinol 56(5):655–669CrossRefGoogle Scholar
  14. 14.
    Van den Berghe G, Weekers F, Baxter RC et al (2001) Five-day pulsatile gonadotropin-releasing hormone administration unveils combined hypothalamic-pituitary- gonadal defects underlying profound hypoandrogenism in men with prolonged critical illness*. J Clin Endocrinol Metab 86(7):3217–3226PubMedGoogle Scholar
  15. 15.
    Van den Berghe G, Wouters P, Weekers F et al (1999) Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone- releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness*. J Clin Endocrinol Metab 84:1311–1323PubMedGoogle Scholar
  16. 16.
    Owen HC, Vanhees I, Solie L, Roberts SJ, Wauters A, Luyten FP, van Cromphaut S, van den Berghe G (2012) Critical illness-related bone loss is associated with osteoclastic and angiogenic abnormalities. J Bone Miner Res 27(7):1541–1552.  https://doi.org/10.1002/jbmr.1612 CrossRefPubMedGoogle Scholar
  17. 17.
    Van den Berghe G (2003) Bone turnover in prolonged critical illness: effect of vitamin D. J Clin Endocrinol Metab 88(10):4623–4632.  https://doi.org/10.1210/jc.2003-030358 CrossRefPubMedGoogle Scholar
  18. 18.
    Smith LM, Cuthbertson B, Harvie J, Webster N, Robins S, Ralston SH (2002) Increased bone resorption in the critically ill: association with sepsis and increased nitric oxide production. Crit Care Med 30(4):837–840CrossRefGoogle Scholar
  19. 19.
    Shapses SA, Weissman C, Seibel MJ, Chowdhury HA (1997) Urinary pyridinium cross-link excretion is increased in critically ill surgical patients. Crit Care Med 25(1):85–90CrossRefGoogle Scholar
  20. 20.
    Schwetz V, Schnedl C, Urbanic-Purkart T, Trummer C, Dimai HP, Fahrleitner-Pammer A, Putz-Bankuti C, Christopher KB, Obermayer-Pietsch B, Pieber TR, Dobnig H, Amrein K (2017) Effect of vitamin D3 on bone turnover markers in critical illness: post hoc analysis from the VITdAL-ICU study. Osteoporos Int 28:1–8.  https://doi.org/10.1007/s00198-017-4190-1 CrossRefGoogle Scholar
  21. 21.
    Koch A, Weiskirchen R, Ludwig S, Buendgens L, Bruensing J, Yagmur E, Baeck C, Herbers U, Trautwein C, Tacke F (2017) Relevance of serum sclerostin concentrations in critically ill patients. J Crit Care 37(C):38–44.  https://doi.org/10.1016/j.jcrc.2016.08.019 CrossRefPubMedGoogle Scholar
  22. 22.
    Gavala A, Makris K, Korompeli A, Myrianthefs P (2016) Evaluation of bone metabolism in critically ill patients using CTx and PINP. Biomed Res Int 2016(4):1–9.  https://doi.org/10.1155/2016/1951707 CrossRefGoogle Scholar
  23. 23.
    Rawal J, McPhail MJ, Ratnayake G et al (2015) A pilot study of change in fracture risk in patients with acute respiratory distress syndrome. Crit Care 19(1):165.  https://doi.org/10.1186/s13054-015-0892-y CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lee P, Ng C, Slattery A, Nair P, Eisman JA, Center JR (2016) Preadmission bisphosphonate and mortality in critically ill patients. J Clin Endocrinol Metab 101(5):1945–1953.  https://doi.org/10.1210/jc.2015-3467 CrossRefPubMedGoogle Scholar
  25. 25.
    Bagshaw SM, Stelfox HT, Johnson JA, McDermid RC, Rolfson DB, Tsuyuki RT, Ibrahim Q, Majumdar SR (2015) Long-term association between frailty and health-related quality of life among survivors of critical illness. Crit Care Med 43(5):973–982.  https://doi.org/10.1097/CCM.0000000000000860 CrossRefPubMedGoogle Scholar
  26. 26.
    Schwetz V, Schnedl C, Urbanic-Purkart T, Trummer C, Dimai HP, Fahrleitner-Pammer A, Putz-Bankuti C, Christopher KB, Obermayer-Pietsch B, Pieber TR, Dobnig H, Amrein K (2017) Effect of vitamin D3 on bone turnover markers in critical illness: post hoc analysis from the VITdAL-ICU study. Osteoporos Int 28(12):3347–3354.  https://doi.org/10.1007/s00198-017-4190-1 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Via MA, Potenza MV, Hollander J, Liu X, Peng Y, Li J, Sun L, Zaidi M, Mechanick JI (2012) Intravenous Ibandronate acutely reduces bone hyperresorption in chronic critical illness. J Intensive Care Med 27(5):312–318.  https://doi.org/10.1177/0885066611402156 CrossRefPubMedGoogle Scholar
  28. 28.
    Kastritis E, Gavriatopoulou M, Dimopoulos MA, Eleutherakis-Papaiakovou E, Kanellias N, Roussou M, Pamboucas C, Toumanidis ST, Terpos E (2015) Osteoprotegerin is a significant prognostic factor for overall survival in patients with primary systemic amyloidosis independent of the Mayo staging. Blood Cancer J 5(6):e319.  https://doi.org/10.1038/bcj.2015.45 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lerchbaum E, Schwetz V, Pilz S, Boehm BO, März W (2013) Association of bone turnover markers with mortality in women referred to coronary angiography: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Osteoporos Int 25(2):455–465.  https://doi.org/10.1007/s00198-013-2411-9 CrossRefPubMedGoogle Scholar
  30. 30.
    Lerchbaum E, Schwetz V, Pilz S, Grammer TB, Look M, Boehm BO, Obermayer-Pietsch B, März W (2012) Association of bone turnover markers with mortality in men referred to coronary angiography. Osteoporos Int 24(4):1321–1332.  https://doi.org/10.1007/s00198-012-2076-9 CrossRefPubMedGoogle Scholar
  31. 31.
    Levinger I, Brennan-Speranza TC, Zulli A, Parker L, Lin X, Lewis JR, Yeap BB (2017) Multifaceted interaction of bone, muscle, lifestyle interventions and metabolic and cardiovascular disease: role of osteocalcin. Osteoporos Int 28:1–9.  https://doi.org/10.1007/s00198-017-3994-3 CrossRefGoogle Scholar
  32. 32.
    Lee P, Nair P, Eisman JA, Center JR (2016) Bone failure in critical illness. Crit Care Med 44(12):2270–2274.  https://doi.org/10.1097/CCM.0000000000001874 CrossRefPubMedGoogle Scholar
  33. 33.
    Grey A, Bolland MJ (2013) The effect of treatments for osteoporosis on mortality. Osteoporos Int 24(1):1–6.  https://doi.org/10.1007/s00198-012-2176-6 CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  • Neil R. Orford
    • 1
    • 2
    • 3
    Email author
  • Michael Bailey
    • 2
  • Rinaldo Bellomo
    • 2
  • Julie A. Pasco
    • 3
    • 4
    • 5
  • David J. Cooper
    • 2
  • Mark A. Kotowicz
    • 3
    • 5
  1. 1.Intensive CareUniversity Hospital Geelong, Barwon HealthGeelongAustralia
  2. 2.Australian and New Zealand Intensive Care Research Centre (ANZIC RC), Department of Epidemiology and Preventive Medicine (DEPM)Monash UniversityMelbourneAustralia
  3. 3.School of MedicineDeakin UniversityGeelongAustralia
  4. 4.Department of Epidemiology and Preventive Medicine (DEPM)Monash UniversityMelbourneAustralia
  5. 5.Department of Medicine, Melbourne Medical School-Western CampusThe University of MelbourneSt AlbansAustralia

Personalised recommendations