Archives of Osteoporosis

, 13:120 | Cite as

Individualized evaluation of lumbar bone mineral density in children with cerebral palsy

  • Ibrahim DuranEmail author
  • J. Katzmann
  • K. Martakis
  • C. Stark
  • O. Semler
  • E. Schoenau
Original Article



Lumbar spine bone mineral density (LS-BMD) assessed by dual-energy X-ray absorptiometry (DXA) is used in children with cerebral palsy (CP) to evaluate bone health. LS-BMD results in children with CP are influenced significantly by their height, BMI, and mobility level. An adjustment for these parameters might improve the clinical significance of the method.


DXA evaluation is considered useful in children with CP to assess bone health. For this purpose, LS-BMD is often used. The aim of the study was to estimate the effect of height, BMI, and reduced mobility level of children with CP on LS-BMD and to develop a method to adjust individual results of LS-BMD for these factors.


We conducted a monocentric retrospective analysis of data collected in children and adolescents with CP, who participated in a rehabilitation program and had no history of recurrent fractures. The DXA scan was part of the routine examination for participants older than 4 years of age. The relationship between height and BMI for age Z-scores and age-adjusted LS-BMD Z-scores was analyzed.


LS-DXA scans of 500 children and adolescents with CP (Gross Motor Function Classification System levels I–V) were included in the statistical analysis (217 female). The mean age was 9.4 years (± 3.7 years). Children with moderate to severe CP had significantly (p < 0.001) lower LS-BMD Z-scores than children with mild CP. We provided nomograms to adjust individual LS-BMD results to their height, BMI, and mobility level.


LS-BMD results in children with CP were influenced significantly by their height, BMI, and mobility level. An adjustment of the LS-BMD results to height, BMI, and mobility level might improve the clinical significance of an individual result.


Lumbar spine bone mineral density Functional muscle-bone unit Children Cerebral palsy 



BMI for age Z-score


Bone mineral density


Bone mineral apparent density


Dual-energy X-ray absorptiometry


Height for age Z-score


Lumbar spine


Standard deviation


Total body less head


Compliance with ethical standards

After obtaining written informed consent of patients’ legal representatives for data analysis, data of the participants are stored in a prospective monocentric patient registry. The Ethics Committee of the University of Cologne approved this registry (16-269).

Conflicts of interest


Supplementary material

11657_2018_531_Fig5_ESM.png (336 kb)
eFig 1

(PNG 335 kb)

11657_2018_531_MOESM1_ESM.tiff (524 kb)
High resolution image (TIF 524 kb)
11657_2018_531_Fig6_ESM.png (418 kb)
eFig 2

(PNG 418 kb)

11657_2018_531_MOESM2_ESM.tiff (630 kb)
High resolution image (TIF 629 kb)


  1. 1.
    Cans C (2000) Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol 42(12):816–824. CrossRefGoogle Scholar
  2. 2.
    Colver A, Fairhurst C, Pharoah POD (2014) Cerebral palsy. Lancet 383(9924):1240–1249. CrossRefPubMedGoogle Scholar
  3. 3.
    Uddenfeldt Wort U, Nordmark E, Wagner P, Düppe H, Westbom L (2013) Fractures in children with cerebral palsy: a total population study. Dev Med Child Neurol 55(9):821–826. CrossRefPubMedGoogle Scholar
  4. 4.
    Khoury DJ, Szalay EA (2007) Bone mineral density correlation with fractures in nonambulatory pediatric patients. J Pediatr Orthop 27(5):562–566. CrossRefPubMedGoogle Scholar
  5. 5.
    Cheng XG, Lowet G, Boonen S, Nicholson PHF, Brys P, Nijs J, Dequeker J (1997) Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 20(3):213–218CrossRefGoogle Scholar
  6. 6.
    Bianchi ML, Leonard MB, Bechtold S, Högler W, Mughal MZ, Schönau E, Sylvester FA, Vogiatzi M, van den Heuvel-Eibrink M, Ward L, International Society for Clinical Densitometry (2014) Bone health in children and adolescents with chronic diseases that may affect the skeleton: the 2013 ISCD Pediatric Official Positions. J Clin Densitom 17(2):281–294. CrossRefPubMedGoogle Scholar
  7. 7.
    Ozel S, Switzer L, Macintosh A, Fehlings D (2016) Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: an update. Dev Med Child Neurol 58(9):918–923. CrossRefPubMedGoogle Scholar
  8. 8.
    Zemel BS, Stallings VA, Leonard MB, Paulhamus DR, Kecskemethy HH, Harcke HT, Henderson RC (2009) Revised pediatric reference data for the lateral distal femur measured by Hologic Discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitom 12(2):207–218. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fan B, Shepherd JA, Levine MA, Steinberg D, Wacker W, Barden HS, Ergun D, Wu XP (2014) National Health and Nutrition Examination Survey whole-body dual-energy X-ray absorptiometry reference data for GE Lunar systems. J Clin Densitom 17(3):344–377. CrossRefPubMedGoogle Scholar
  10. 10.
    Crabtree NJ, Högler W, Cooper MS, Shaw NJ (2013) Diagnostic evaluation of bone densitometric size adjustment techniques in children with and without low trauma fractures. Osteoporos Int 24(7):2015–2024. CrossRefPubMedGoogle Scholar
  11. 11.
    Henderson RC, Lark RK, Gurka MJ, Worley G, Fung EB, Conaway M, Stallings VA, Stevenson RD (2002) Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics 110(1):e5–e5. CrossRefPubMedGoogle Scholar
  12. 12.
    Prentice A, Parsons TJ, Cole TJ (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60(6):837–842CrossRefGoogle Scholar
  13. 13.
    Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, Mahboubi S, Shepherd JA, Hangartner TN, Frederick MM, Winer KK, Kalkwarf HJ (2010) Height adjustment in assessing dual energy X-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab 95(3):1265–1273. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, Frederick MM, Huang X, Lu M, Mahboubi S, Hangartner T, Winer KK (2011) Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab 96(10):3160–3169. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kröger H, Kotaniemi A, Kröger L, Alhava E (1993) Development of bone mass and bone density of the spine and femoral neck—a prospective study of 65 children and adolescents. Bone and Mineral 23(3):171–182. CrossRefPubMedGoogle Scholar
  16. 16.
    Cvijetić S, Korsić M (2004) Apparent bone mineral density estimated from DXA in healthy men and women. Osteoporos Int 15(4):295–300. CrossRefPubMedGoogle Scholar
  17. 17.
    Frost HM, Schönau E (2000) The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab 13(6):12. CrossRefGoogle Scholar
  18. 18.
    Schönau E, Werhahn E, Schiedermaier U et al (1996) Influence of muscle strength on bone strength during childhood and adolescence. Horm Res 45(Suppl 1):63–66PubMedGoogle Scholar
  19. 19.
    Duran I, Schütz F, Hamacher S, Semler O, Stark C, Schulze J, Rittweger J, Schoenau E (2017) The functional muscle-bone unit in children with cerebral palsy. Osteoporos Int 28(7):2081–2093. CrossRefPubMedGoogle Scholar
  20. 20.
    Ackerman A, Thornton JC, Wang J, Pierson RN, Horlick M (2006) Sex difference in the effect of puberty on the relationship between fat mass and bone mass in 926 healthy subjects, 6 to 18 years old. Obesity (Silver Spring) 14(5):819–825. CrossRefGoogle Scholar
  21. 21.
    Berenson AB, Breitkopf CR, Newman JL, Rahman M (2009) Contribution of fat-free mass and fat mass to bone mineral density among reproductive-aged women of white, black, and Hispanic race/ethnicity. J Clin Densitom 12(2):200–206. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Liu P-Y, Ilich JZ, Brummel-Smith K, Ghosh S (2014) New insight into fat, muscle and bone relationship in women: determining the threshold at which body fat assumes negative relationship with bone mineral density. Int J Prev Med 5(11):1452–1463PubMedPubMedCentralGoogle Scholar
  23. 23.
    Rico H, Revilla M, Villa LF, del Buergo MA, Ruiz-Contreras D (1994) Determinants of total-body and regional bone mineral content and density in postpubertal normal women. Metab Clin Exp 43(2):263–266CrossRefGoogle Scholar
  24. 24.
    Zhu K, Briffa K, Smith A, Mountain J, Briggs AM, Lye S, Pennell C, Straker L, Walsh JP (2014) Gender differences in the relationships between lean body mass, fat mass and peak bone mass in young adults. Osteoporos Int 25(5):1563–1570. CrossRefPubMedGoogle Scholar
  25. 25.
    Duran I, Martakis K, Hamacher S, Stark C, Semler O, Schoenau E (2018) Are there effects of age, gender, height, and body fat on the functional muscle-bone unit in children and adults? Osteoporos Int 29:1069–1079. CrossRefPubMedGoogle Scholar
  26. 26.
    Stark C, Hoyer-Kuhn H-K, Semler O, Hoebing L, Duran I, Cremer R, Schoenau E (2015) Neuromuscular training based on whole body vibration in children with spina bifida: a retrospective analysis of a new physiotherapy treatment program. Childs Nerv Syst 31(2):301–309. CrossRefPubMedGoogle Scholar
  27. 27.
    Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39(4):214–223CrossRefGoogle Scholar
  28. 28.
    Finbråten A-K, Martins C, Andersen GL, Skranes J, Brannsether B, Júlíusson PB, Syversen U, Stevenson RD, Vik T (2015) Assessment of body composition in children with cerebral palsy: a cross-sectional study in Norway. Dev Med Child Neurol 57(9):858–864. CrossRefPubMedGoogle Scholar
  29. 29.
    Jaworski M, Pludowski P (2013) Precision errors, least significant change, and monitoring time interval in pediatric measurements of bone mineral density, body composition, and mechanostat parameters by GE lunar prodigy. J Clin Densitom 16(4):562–569. CrossRefPubMedGoogle Scholar
  30. 30.
    Crabtree NJ, Shaw NJ, Bishop NJ, Adams JE, Mughal MZ, Arundel P, Fewtrell MS, Ahmed SF, Treadgold LA, Högler W, Bebbington NA, Ward KA, on behalf of the ALPHABET Study Team (2017) Amalgamated reference data for size-adjusted bone densitometry measurements in 3598 children and young adults-the ALPHABET study. J Bone Miner Res 32(1):172–180. CrossRefPubMedGoogle Scholar
  31. 31.
    Koch-Institut R Referenzperzentile für anthropometrische Maßzahlen und Blutdruck aus der Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland (KiGGS)Google Scholar
  32. 32.
    Indrayan A (2014) Demystifying LMS and BCPE methods of centile estimation for growth and other health parameters. Indian Pediatr 51(1):37–43. CrossRefPubMedGoogle Scholar
  33. 33.
    Andri, S et al (2017) DescTools: tools for descriptive statistics. R package version 0.99.22.
  34. 34.
    King W, Levin R, Schmidt R, Oestreich A, Heubi JE (2003) Prevalence of reduced bone mass in children and adults with spastic quadriplegia. Dev Med Child Neurol 45(1):12–16CrossRefGoogle Scholar
  35. 35.
    Finbråten A-K, Syversen U, Skranes J, Andersen GL, Stevenson RD, Vik T (2015) Bone mineral density and vitamin D status in ambulatory and non-ambulatory children with cerebral palsy. Osteoporos Int 26(1):141–150. CrossRefPubMedGoogle Scholar
  36. 36.
    Heidemann M, Holst R, Schou AJ, Klakk H, Husby S, Wedderkopp N, Mølgaard C (2015) The influence of anthropometry and body composition on children’s bone health: the childhood health, activity and motor performance school (the CHAMPS) study, Denmark. Calcif Tissue Int 96(2):97–104. CrossRefPubMedGoogle Scholar
  37. 37.
    Henderson RC, Kairalla J, Abbas A, Stevenson RD (2004) Predicting low bone density in children and young adults with quadriplegic cerebral palsy. Dev Med Child Neurol 46(06):115. CrossRefGoogle Scholar
  38. 38.
    Herskind A, Ritterband-Rosenbaum A, Willerslev-Olsen M, Lorentzen J, Hanson L, Lichtwark G, Nielsen JB (2016) Muscle growth is reduced in 15-month-old children with cerebral palsy. Dev Med Child Neurol 58(5):485–491. CrossRefPubMedGoogle Scholar
  39. 39.
    Burt LA, Manske SL, Hanley DA, Boyd SK (2018) Lower bone density, impaired microarchitecture, and strength predict future fragility fracture in postmenopausal women: 5-year follow-up of the Calgary CaMos Cohort. J Bone Miner Res 33(4):589–597. CrossRefPubMedGoogle Scholar
  40. 40.
    Misof BM, Gamsjaeger S, Cohen A, Hofstetter B, Roschger P, Stein E, Nickolas TL, Rogers HF, Dempster D, Zhou H, Recker R, Lappe J, McMahon D, Paschalis EP, Fratzl P, Shane E, Klaushofer K (2012) Bone material properties in premenopausal women with idiopathic osteoporosis. J Bone Miner Res 27(12):2551–2561. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Brooks J, Day S, Shavelle R, Strauss D (2011) Low weight, morbidity, and mortality in children with cerebral palsy: new clinical growth charts. Pediatrics 128(2):e299–e307. CrossRefPubMedGoogle Scholar
  42. 42.
    Henderson RC, Kairalla JA, Barrington JW, Abbas A, Stevenson RD (2005) Longitudinal changes in bone density in children and adolescents with moderate to severe cerebral palsy. J Pediatr 146(6):769–775. CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang Y, Zheng Y-X, Zhu J-M et al (2015) Effects of antiepileptic drugs on bone mineral density and bone metabolism in children: a meta-analysis. J Zhejiang Univ Sci B 16(7):611–621. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  • Ibrahim Duran
    • 1
    Email author
  • J. Katzmann
    • 1
  • K. Martakis
    • 2
    • 3
  • C. Stark
    • 2
    • 4
  • O. Semler
    • 2
    • 5
  • E. Schoenau
    • 1
    • 2
  1. 1.Center of Prevention and Rehabilitation, UniRehaUniversity of CologneCologneGermany
  2. 2.Children’s and Adolescents’ HospitalUniversity of CologneCologneGermany
  3. 3.Department of International Health, School CAPHRI, Care and Public Health Research InstituteMaastricht UniversityMaastrichtthe Netherlands
  4. 4.Cologne Centre for Musculoskeletal BiomechanicsUniversity of CologneCologneGermany
  5. 5.Center for Rare Skeletal Diseases in ChildhoodUniversity of CologneCologneGermany

Personalised recommendations