Archives of Osteoporosis

, 13:92 | Cite as

Grip strength cutpoints for youth based on a clinically relevant bone health outcome

  • Pedro F. Saint-Maurice
  • Kelly Laurson
  • Gregory J. Welk
  • Joe Eisenmann
  • Luis Gracia-Marco
  • Enrique G. Artero
  • Francisco Ortega
  • Jonatan R. Ruiz
  • Luis A. Moreno
  • German Vicente-Rodriguez
  • Kathleen F. Janz
Original Article



The National Academy of Medicine recommends the handgrip for school-based surveillance of muscle strength for bone health. We established grip strength cutpoints that are linked to bone health in both US and European youth. These cutpoints could serve as a potential set of standards for surveillance and clinical applications.


The U.S. National Academy of Medicine and experts in Europe recommend the use of grip strength as a valuable and accessible musculoskeletal fitness measure due to its association with bone health. This is the first study to facilitate this recommendation by developing bone health-related grip strength cutpoints for youth based on empirical associations with the well accepted marker of bone development, i.e., height-adjusted total body less head bone mineral content (TBLH_BMC).


A purposive sample of healthy youth from Midwest USA (n = 433 youth; 14.1 ± 2.3 years; 1998–2004) and a random sample of healthy adolescents from Zaragoza, Spain (n = 355 youth; 14.9 ± 1.2 years; 2006–2007) were used to develop and test cut-points. Participants’ grip strength was measured using a hand-held dynamometer while height-adjusted TBLH_BMC was determined using dual-energy x-ray absorptiometry. Grip strength scores were linked to TBLH_BMC using receiver operator characteristic curves, and grip strength cutpoints were tested based on the area under the curve (AUC), sensitivity (Se), specificity (Sp), and predictive odds ratios. All analyses were conducted in 2016.


The AUC approximated or exceeded 0.80 for grip strength cutpoints, and the associated Se and Sp indices ranged from 53.6 to 92.5%. Sensitivity and Sp remained similar in the validation sample and those not meeting the grip strength cutpoints were five to eight times more likely to have insufficient TBLH_BMC, depending on their sex and cutpoint being considered.


Grip strength is strongly related to TBLH_BMC, and the proposed cutpoints demonstrated acceptable classification accuracy for screening healthy youth and tracking healthy bone development in community settings. The utility of the cutpoints should be further examined in more diverse populations of youth.


Preventive medicine Sports medicine/physical fitness 


Funding information

The Iowa Bone Development study was supported by NIDCR (R01-DE09551 and DE12101), GCRCP (M01-RR00059), and NCRR (UL1TR000442). The HELENA Study was carried out with the financial support of the European Community Sixth RTD Framework Programme (Contract FOOD-CT-2005-007034). This study was funded by The Cooper Institute, Dallas, Texas under an individual grant attributed to Pedro F. Saint-Maurice.

Compliance with ethical standards

Conflicts of interest


Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

11657_2018_502_MOESM1_ESM.docx (41 kb)
ESM 1 (DOCX 37 kb)


  1. 1.
    Ortega FB, Silventoinen K, Tynelius P, Rasmussen F (2012) Muscular strength in male adolescents and premature death: cohort study of one million participants. BMJ 345:e7279. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A, Jr., Orlandini A, Seron P, Ahmed SH, Rosengren A, Kelishadi R, Rahman O, Swaminathan S, Iqbal R, Gupta R, Lear SA, Oguz A, Yusoff K, Zatonska K, Chifamba J, Igumbor E, Mohan V, Anjana RM, Gu H, Li W, Yusuf S (2015) Prognostic value of grip strength: findings from the prospective urban rural epidemiology (PURE) study. Lancet 386 (9990):266–273. doi: [pii]
  3. 3.
    World Health Organization (2010) Global recommendations on physical activity for health. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  4. 4.
    Centers for Disease Control and Prevention. Physical Activity Guidelines Advisory Committee Report, 2008. Washington, DC, 2008Google Scholar
  5. 5.
    Turner CH, Forwood MR, Rho JY, Yoshikawa T (1994) Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res 9(1):87–97. CrossRefPubMedGoogle Scholar
  6. 6.
    Frost HM (1987) The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2(2):73–85PubMedGoogle Scholar
  7. 7.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 22(3):465–475. CrossRefPubMedGoogle Scholar
  8. 8.
    Cheung CL, Nguyen US, Au E, Tan KC, Kung AW (2013) Association of handgrip strength with chronic diseases and multimorbidity: a cross-sectional study. Age (Dordr) 35(3):929–941. CrossRefGoogle Scholar
  9. 9.
    Leonard MB, Zemel BS (2002) Current concepts in pediatric bone disease. Pediatr Clin N Am 49(1):143–173CrossRefGoogle Scholar
  10. 10.
    Clark EM, Ness AR, Bishop NJ, Tobias JH (2006) Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res 21(9):1489–1495. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46(2):294–305. CrossRefPubMedGoogle Scholar
  12. 12.
    Bachrach LK, Sills IN (2011) Clinical report-bone densitometry in children and adolescents. Pediatrics 127(1):189–194. CrossRefPubMedGoogle Scholar
  13. 13.
    Artero EG, Espana-Romero V, Castro-Pinero J, Ruiz J, Jimenez-Pavon D, Aparicio V, Gatto-Cardia M, Baena P, Vicente-Rodriguez G, Castillo MJ, Ortega FB (2012) Criterion-related validity of field-based muscular fitness tests in youth. J Sports Med Phys Fitness 52 (3):263–272. doi: R40123544Google Scholar
  14. 14.
    Institute of Medicine (2012) Fitness measures and health outcomes in youth. In: The National Academies Press; Washington DCGoogle Scholar
  15. 15.
    Castro-Pinero J, Artero EG, Espana-Romero V, Ortega FB, Sjostrom M, Suni J, Ruiz JR (2010) Criterion-related validity of field-based fitness tests in youth: a systematic review. Br J Sports Med 44(13):934–943. CrossRefPubMedGoogle Scholar
  16. 16.
    Ortega FB, Ruiz J (2015) Fitness in youth: methodological issues and understanding of its clinical value. Am J Lifestyle Med 9(6):403–408CrossRefGoogle Scholar
  17. 17.
    Ruiz JR, Castro-Pinero J, Artero EG, Ortega FB, Sjostrom M, Suni J, Castillo MJ (2009) Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med 43(12):909–923. CrossRefPubMedGoogle Scholar
  18. 18.
    Ruiz JR, Castro-Pinero J, Espana-Romero V, Artero EG, Ortega FB, Cuenca MM, Jimenez-Pavon D, Chillon P, Girela-Rejon MJ, Mora J, Gutierrez A, Suni J, Sjostrom M, Castillo MJ (2011) Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med 45(6):518–524. CrossRefPubMedGoogle Scholar
  19. 19.
    Artero EG, Espana-Romero V, Castro-Pinero J, Ortega FB, Suni J, Castillo-Garzon MJ, Ruiz JR (2011) Reliability of field-based fitness tests in youth. Int J Sports Med 32(3):159–169. CrossRefPubMedGoogle Scholar
  20. 20.
    De Miguel-Etayo P, Gracia-Marco L, Ortega FB, Intemann T, Foraita R, Lissner L, Oja L, Barba G, Michels N, Tornaritis M, Molnar D, Pitsiladis Y, Ahrens W, Moreno LA (2014) Physical fitness reference standards in European children: the IDEFICS study. Int J Obes (Lond) 38(Suppl 2):S57–S66. CrossRefGoogle Scholar
  21. 21.
    Ortega FB, Artero EG, Ruiz JR, Espana-Romero V, Jimenez-Pavon D, Vicente-Rodriguez G, Moreno LA, Manios Y, Beghin L, Ottevaere C, Ciarapica D, Sarri K, Dietrich S, Blair SN, Kersting M, Molnar D, Gonzalez-Gross M, Gutierrez A, Sjostrom M, Castillo MJ (2011) Physical fitness levels among European adolescents: the HELENA study. Br J Sports Med 45(1):20–29. CrossRefPubMedGoogle Scholar
  22. 22.
    Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, Der G, Gale CR, Inskip HM, Jagger C, Kirkwood TB, Lawlor DA, Robinson SM, Starr JM, Steptoe A, Tilling K, Kuh D, Cooper C, Sayer AA (2014) Grip strength across the life course: normative data from twelve British studies. PLoS One 9(12):e113637. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ploegmakers JJ, Hepping AM, Geertzen JH, Bulstra SK, Stevens M (2013) Grip strength is strongly associated with height, weight and gender in childhood: a cross sectional study of 2241 children and adolescents providing reference values. J Physiother 59(4):255–261. CrossRefPubMedGoogle Scholar
  24. 24.
    Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, O'Karma M, Wallace TC, Zemel BS (2016) The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27(4):1281–1386. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Welk GJ, Going SB, Morrow JR Jr, Meredith MD (2011) Development of new criterion-referenced fitness standards in the FITNESSGRAM (R) program: rationale and conceptual overview. Am J Prev Med 41(4 Suppl 2):S63–S67. CrossRefPubMedGoogle Scholar
  26. 26.
    Janz KF, Letuchy EM, Burns TL, Eichenberger Gilmore JM, Torner JC, Levy SM (2014) Objectively measured physical activity trajectories predict adolescent bone strength: Iowa bone development study. Br J Sports Med 48(13):1032–1036. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Janz KF, Burns TL, Torner JC, Levy SM, Paulos R, Willing MC, Warren JJ (2001) Physical activity and bone measures in young children: the Iowa bone development study. Pediatrics 107(6):1387–1393CrossRefGoogle Scholar
  28. 28.
    Ortega FB, Artero EG, Ruiz JR, Vicente-Rodriguez G, Bergman P, Hagstromer M, Ottevaere C, Nagy E, Konsta O, Rey-Lopez JP, Polito A, Dietrich S, Plada M, Beghin L, Manios Y, Sjostrom M, Castillo MJ (2008) Reliability of health-related physical fitness tests in European adolescents. The HELENA study. Int J Obes (Lond) 32 Suppl 5:S49–S57. doi:
  29. 29.
    Moreno LA, De Henauw S, Gonzalez-Gross M, Kersting M, Molnar D, Gottrand F, Barrios L, Sjostrom M, Manios Y, Gilbert CC, Leclercq C, Widhalm K, Kafatos A, Marcos A (2008) Design and implementation of the healthy lifestyle in Europe by nutrition in adolescence cross-sectional study. Int J Obes (Lond) 32 Suppl 5:S4–11. doi:
  30. 30.
    Armstrong N, Welsman JR (2007) Aerobic fitness: what are we measuring? Med Sport Sci 50:5–25CrossRefGoogle Scholar
  31. 31.
    Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, Frederick MM, Huang X, Lu M, Mahboubi S, Hangartner T, Winer KK (2011) Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab 96(10):3160–3169. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW (1989) Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 262(17):2395–2401CrossRefGoogle Scholar
  33. 33.
    Lakoski SG, Willis BL, Barlow CE, Leonard D, Gao A, Radford NB, Farrell SW, Douglas PS, Berry JD, DeFina LF, Jones LW (2015) Midlife cardiorespiratory fitness, incident cancer, and survival after cancer in men: the Cooper Center Longitudinal Study. JAMA Oncol 1(2):231–237. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Farrell SW, Finley CE, Haskell WL, Grundy SM (2015) Is there a gradient of mortality risk among men with low cardiorespiratory fitness? Med Sci Sports Exerc 47(9):1825–1832. CrossRefPubMedGoogle Scholar
  35. 35.
    Cawsey S, Padwal R, Sharma AM, Wang X, Li S, Siminoski K (2015) Women with severe obesity and relatively low bone mineral density have increased fracture risk. Osteoporos Int 26(1):103–111. CrossRefPubMedGoogle Scholar
  36. 36.
    Hongsdusit N, von Muhlen D, Barrett-Connor E (2006) A comparison between peripheral BMD and central BMD measurements in the prediction of spine fractures in men. Osteoporos Int 17(6):872–877. CrossRefPubMedGoogle Scholar
  37. 37.
    Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, El-Hajj Fuleihan G, Kutilek S, Lorenc RS, Tosi LL, Ward KA, Ward LM, Kalkwarf HJ (2008) Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD pediatric official positions. J Clin Densitom 11(1):43–58. CrossRefPubMedGoogle Scholar
  38. 38.
    Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8(4):283–298CrossRefGoogle Scholar
  39. 39.
    Laurson KR, Eisenmann JC, Welk GJ (2011) Development of youth percent body fat standards using receiver operating characteristic curves. Am J Prev Med 41(4 Suppl 2):S93–S99. CrossRefPubMedGoogle Scholar
  40. 40.
    Welk GJ, Laurson KR, Eisenmann JC, Cureton KJ (2011) Development of youth aerobic-capacity standards using receiver operating characteristic curves. Am J Prev Med 41(4 Suppl 2):S111–S116. CrossRefPubMedGoogle Scholar
  41. 41.
    Bai Y, Saint-Maurice PF, Welk GJ, Allums-Featherston K, Candelaria N, Anderson K (2015) Prevalence of youth fitness in the United States: baseline results from the NFL PLAY 60 FITNESSGRAM partnership project. J Pediatr 167(3):662–668. CrossRefPubMedGoogle Scholar
  42. 42.
    Prentice A, Parsons TJ, Cole TJ (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60(6):837–842CrossRefGoogle Scholar
  43. 43.
    Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26(8):1729–1739. CrossRefPubMedGoogle Scholar
  44. 44.
    Heaney RP (2003) Bone mineral content, not bone mineral density, is the correct bone measure for growth studies. Am J Clin Nutr 78(2):350–351 author reply 351-352CrossRefGoogle Scholar
  45. 45.
    Lewiecki EM, Gordon CM, Baim S, Leonard MB, Bishop NJ, Bianchi ML, Kalkwarf HJ, Langman CB, Plotkin H, Rauch F, Zemel BS, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Silverman S (2008) International Society for Clinical Densitometry 2007 adult and pediatric official positions. Bone 43(6):1115–1121. CrossRefPubMedGoogle Scholar
  46. 46.
    Espana-Romero V, Ortega FB, Vicente-Rodriguez G, Artero EG, Rey JP, Ruiz JR (2010) Elbow position affects handgrip strength in adolescents: validity and reliability of Jamar, DynEx, and TKK dynamometers. J Strength Cond Res 24(1):272–277. CrossRefPubMedGoogle Scholar
  47. 47.
    Hager-Ross C, Rosblad B (2002) Norms for grip strength in children aged 4-16 years. Acta Paediatr 91(6):617–625CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  • Pedro F. Saint-Maurice
    • 1
    • 2
  • Kelly Laurson
    • 3
  • Gregory J. Welk
    • 4
  • Joe Eisenmann
    • 5
  • Luis Gracia-Marco
    • 6
    • 7
  • Enrique G. Artero
    • 8
  • Francisco Ortega
    • 9
  • Jonatan R. Ruiz
    • 10
    • 11
  • Luis A. Moreno
    • 7
    • 12
    • 13
  • German Vicente-Rodriguez
    • 7
    • 14
    • 15
  • Kathleen F. Janz
    • 16
  1. 1.Metabolic Epidemiology Branch, Division of Cancer Epidemiology and GeneticsNational Cancer Institute, NIH, HHSRockvilleUSA
  2. 2.Department of KinesiologyIowa State UniversityAmesUSA
  3. 3.School of Kinesiology and RecreationIllinois State UniversityNormalUSA
  4. 4.Department of KinesiologyIowa State UniversityAmesUSA
  5. 5.College of Osteopathic MedicineMichigan State UniversityEast LansingUSA
  6. 6.Children’s Health and Exercise Research Centre, Sport and Health SciencesUniversity of ExeterExeterUK
  7. 7.University of ZaragozaZaragozaSpain
  8. 8.SPORT Research Group (CTS-1024)University of AlmeríaAlmeríaSpain
  9. 9.School of Sport SciencesUniversity of GranadaGranadaSpain
  10. 10.University of GranadaGranadaSpain
  11. 11.Department of Physical Education and Sport, Faculty of Sport SciencesGranadaSpain
  12. 12.Instituto Agroalimentario de Aragón (IA2)ZaragozaSpain
  13. 13.Instituto Investigación Sanitaria Aragón (IIS Aragón), Centro de Investigación en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN)ZaragozaSpain
  14. 14.Department of Physiatry and Nursing, Faculty of Health and Sport SciencesHuesca (España)Spain
  15. 15.Instituto Agroalimentario de Aragón (IA2), Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)ZaragozaSpain
  16. 16.Department of Health and Human PhysiologyUniversity of IowaIowa CityUSA

Personalised recommendations