Archives of Osteoporosis

, 13:22 | Cite as

The burden and undertreatment of fragility fractures among senior women

  • Ana M. RodriguesEmail author
  • Mónica Eusébio
  • Maria José Santos
  • Nélia Gouveia
  • Viviana Tavares
  • Pedro S. Coelho
  • Jorge M. Mendes
  • Jaime C. Branco
  • Helena Canhão
Original Article



Using a large population database, we showed that fragility fractures were highly prevalent in senior women and were associated with significant physical disability. However, treatment rates were low because osteoporosis treatment was not prescribed or not agreed to by the majority of women with prevalent fragility fractures.


The purpose of the study is to estimate prevalence of fragility fractures (FF), risk factors, and treatment rates in senior women and to assess impact of FF on physical function and quality of life.


Women aged 65 years and older from the EpiReumaPt study (2011–2013) were evaluated. Rheumatologists collected data regarding FF, clinical risk factors for fractures, and osteoporosis (OP) treatment. Health-related quality of life (EQ5D) and physical function (HAQ) were analyzed. Peripheral dual-energy X-ray absorptiometry was performed. FF was defined as any self-reported low-impact fracture that occurred after 40 years of age. Prevalence estimates of FF were calculated.


Among 3877 subjects evaluated in EpiReumaPt, 884 were senior women. The estimated prevalence of FF was 20.7%. Lower leg was the most frequent fracture site reported (37.8%) followed by wrist (18.6%). Only 7.1% of the senior women reporting a prevalent FF were under treatment for OP, and 13.9% never had treatment. OP treatment was not prescribed in 47.7% of FF women, and 23.4% refused treatment. Age (OR = 2.46, 95% CI 1.11–5.47), obesity (OR = 2.05, 95% CI 1.14–3.70), and low wrist BMD (OR = 2.29; 95% CI 1.20, 4.35; p = 0.012) were positively associated with prevalent FF. A significantly higher proportion of women in the lowest quintile of wrist bone mineral density reported FF (OR = 2.29, 95% CI 1.20–4.35). FF were associated with greater physical disability (β = 0.33, 95% CI 0.13–0.51) independent of other comorbidities.


FF was frequently reported among senior women as an important cause of physical disability. However, the prevalence of OP treatment was low, which constitutes a public health problem in this vulnerable group.


Fragility fractures Osteoporosis treatment Epidemiology Women 



The EpiReumaPt Study Group acknowledges the invaluable input from Sofia Ramiro, MD, PhD; Pedro Machado, MD, PhD; Henrique de Barros, MD, PhD; João Eurico da Fonseca, MD, PhD; José António Pereira da Silva, MD, PhD; Francisco George, MD; Rui André Santos, MD; Luís Maurício Santos, MD; José Carlos Romeu, MD; Faculdade de Medicina da Universidade de Coimbra, Faculdade de Medicina da Universidade de Lisboa, Faculdade de Medicina da Universidade Porto, Liga Portuguesa Contra as Doenças Reumáticas, Associações de doentes com doenças reumáticas, Administrações Regionais de Saúde (Norte, Centro, Lisboa & Vale do Tejo, Alentejo and Algarve), Governo Regional da Madeira, Governo Regional dos Açores, Associação Nacional de Freguesias, Associação Nacional dos Municípios Portugueses, Câmara Municipal de Lisboa, Centros de Saúde, and Centro Hospitalar do Porto—Hospital de São João.

Funding information

The study was supported by unrestricted grants from Direcção-Geral da Saúde, Fundação Calouste Gulbenkian, Fundação Champalimaud, Fundação AstraZeneca, Abbvie, Merck, Sharp & Dohme, Pfizer, Roche, Servier, Bial, D3A Medical Systems, Happybrands, Center de Medicina Laboratorial Germano de Sousa, Clínica Médica da Praia da Vitória, CAL-Clínica, Galp Energia, Açoreana Seguros, and individual rheumatologists.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767CrossRefGoogle Scholar
  2. 2.
    Johnell O (1997) The socioeconomic burden of fractures: today and in the 21st century. Am J Med 103:20S–25S discussion 25S-26SCrossRefGoogle Scholar
  3. 3.
    Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR, Osteoporotic Fractures Research G (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954CrossRefGoogle Scholar
  4. 4.
    Center JR, Bliuc D, Nguyen TV, Eisman JA (2007) Risk of subsequent fracture after low-trauma fracture in men and women. JAMA 297:387–394CrossRefGoogle Scholar
  5. 5.
    Roux C, Wyman A, Hooven FH et al (2012) Burden of non-hip, non-vertebral fractures on quality of life in postmenopausal women: the Global Longitudinal study of Osteoporosis in Women (GLOW). Osteoporos Int 23:2863–2871CrossRefGoogle Scholar
  6. 6.
    Adachi JD, Ioannidis G, Pickard L, Berger C, Prior JC, Joseph L, Hanley DA, Olszynski WP, Murray TM, Anastassiades T, Hopman W, Brown JP, Kirkland S, Joyce C, Papaioannou A, Poliquin S, Tenenhouse A, Papadimitropoulos EA (2003) The association between osteoporotic fractures and health-related quality of life as measured by the Health Utilities Index in the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 14:895–904Google Scholar
  7. 7.
    Pike CT, Birnbaum HG, Schiller M, Swallow E, Burge RT, Edgell ET (2011) Prevalence and costs of osteoporotic patients with subsequent non-vertebral fractures in the US. Osteoporos Int 22:2611–2621CrossRefGoogle Scholar
  8. 8.
    Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136CrossRefGoogle Scholar
  9. 9.
    Harvey NC, McCloskey EV, Mitchell PJ, Dawson-Hughes B, Pierroz DD, Reginster JY, Rizzoli R, Cooper C, Kanis JA (2017) Mind the (treatment) gap: a global perspective on current and future strategies for prevention of fragility fractures. Osteoporos Int 28:1507–1529CrossRefGoogle Scholar
  10. 10.
    Oden A, McCloskey EV, Kanis JA, Harvey NC, Johansson H (2015) Burden of high fracture probability worldwide: secular increases 2010-2040. Osteoporos Int 26:2243–2248Google Scholar
  11. 11.
    WHO (2016) World health statistics 2016: monitoring health for the SDGs. http://wwwwhoint/gho/publications/world_health_ statistics/2016/Annex_B/en/Google Scholar
  12. 12.
    Eastell R, O’Neill TW, Hofbauer LC, Langdahl B, Reid IR, Gold DT, Cummings SR (2016) Postmenopausal osteoporosis. Nat Rev Dis Primers 2:16069CrossRefGoogle Scholar
  13. 13.
    van Staa TP, Dennison EM, Leufkens HG, Cooper C (2001) Epidemiology of fractures in England and Wales. Bone 29:517–522CrossRefGoogle Scholar
  14. 14.
    Kanis JA, Hans D, Cooper C et al (2011) Interpretation and use of FRAX in clinical practice. Osteoporos Int 22:2395–2411CrossRefGoogle Scholar
  15. 15.
    Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287Google Scholar
  16. 16.
    Branco JC, Rodrigues AM, Gouveia N, Eusébio M, Ramiro S, Machado PM, da Costa LP, Mourão AF, Silva I, Laires P, Sepriano A, Araújo F, Gonçalves S, Coelho PS, Tavares V, Cerol J, Mendes JM, Carmona L, Canhão H, on behalf of the EpiReumaPt study group (2016) Prevalence of rheumatic and musculoskeletal diseases and their impact on health-related quality of life, physical function and mental health in Portugal: results from EpiReumaPt—a national health survey. RMD Open e000166:2Google Scholar
  17. 17.
    Ramiro S, Canhao H, Branco JC (2010) EpiReumaPt Protocol—Portuguese epidemiologic study of the rheumatic diseases. Acta Reumatol Port 35:384–390Google Scholar
  18. 18.
    Rodrigues AM, Gouveia N, da Costa LP, Eusébio M, Ramiro S, Machado P, Mourão AF, Silva I, Laires P, Sepriano A, Araújo F, Coelho PS, Gonçalves S, Zhao A, Fonseca JE, de Almeida JM, Tavares V, da Silva JA, Barros H, Cerol J, Mendes J, Carmona L, Canhão H, Branco JC (2015) EpiReumaPt—the study of rheumatic and musculoskeletal diseases in Portugal: a detailed view of the methodology. Acta Reumatol Port 40:110–124Google Scholar
  19. 19.
    WHO (1998) Guidelines for preclinical evaluation and clinical trials in osteoporosis. GenevaGoogle Scholar
  20. 20.
    Melton LJ 3rd, Thamer M, Ray NF, Chan JK, Chesnut CH 3rd, Einhorn TA, Johnston CC, Raisz LG, Silverman SL, Siris ES (1997) Fractures attributable to osteoporosis: report from the National Osteoporosis Foundation. J Bone Miner Res 12:16–23CrossRefGoogle Scholar
  21. 21.
    Chen Z, Kooperberg C, Pettinger MB, Bassford T, Cauley JA, LaCroix AZ, Lewis CE, Kipersztok S, Borne C, Jackson RD (2004) Validity of self-report for fractures among a multiethnic cohort of postmenopausal women: results from the Women’s Health Initiative observational study and clinical trials. Menopause 11:264–274CrossRefGoogle Scholar
  22. 22.
    Ismail AA, O’Neill TW, Cockerill W et al (2000) Validity of self-report of fractures: results from a prospective study in men and women across Europe. EPOS Study Group European Prospective Osteoporosis Study Group Osteoporos Int 11:248–254Google Scholar
  23. 23.
    Honkanen K, Honkanen R, Heikkinen L, Kroger H, Saarikoski S (1999) Validity of self-reports of fractures in perimenopausal women. Am J Epidemiol 150:511–516CrossRefGoogle Scholar
  24. 24.
    Pais-Ribeiro J, Silva I, Ferreira T, Martins A, Meneses R, Baltar M (2007) Validation study of a Portuguese version of the Hospital Anxiety and Depression Scale. Psychol Health Med 12:225–235 quiz 235-227CrossRefGoogle Scholar
  25. 25.
    Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397CrossRefGoogle Scholar
  26. 26.
    Marques A, Rodrigues AM, Romeu JC, Ruano A, Barbosa AP, Simões E, Águas F, Canhão H, Alves JD, Lucas R, Branco JC, Laíns J, Mascarenhas M, Simões S, Tavares V, Lourenço O, da Silva JA (2016) Multidisciplinary Portuguese recommendations on DXA request and indication to treat in the prevention of fragility fractures. Acta Reumatol Port 41:305–321Google Scholar
  27. 27.
    Ferreira LN, Ferreira PL, Pereira LN, Oppe M (2014) EQ-5D Portuguese population norms. Qual Life Res 23:425–430CrossRefGoogle Scholar
  28. 28.
    Ferreira LN, Ferreira PL, Pereira LN, Oppe M (2014) The valuation of the EQ-5D in Portugal. Qual Life Res 23:413–423CrossRefGoogle Scholar
  29. 29.
    Fries JF, Spitz P, Kraines RG, Holman HR (1980) Measurement of patient outcome in arthritis. Arthritis Rheum 23:137–145Google Scholar
  30. 30.
    Levey AS, Stevens LA, Schmid CH, Zhang Y(L), Castro AF III, Feldman HI, Kusek JW, Eggers P, van Lente F, Greene T, Coresh J, for the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612CrossRefGoogle Scholar
  31. 31.
    Gouveia N, Rodrigues AM, Ramiro S, Machado P, da Costa LP, Mourão AF, Silva I, Rego T, Laires P, André R, Mauricio L, Romeu JC, Tavares V, Cerol J, Canhão H, Branco JC (2015) EpiReumaPt: how to perform a national population based study—a practical guide. Acta Reumatol Port 40:128–136Google Scholar
  32. 32.
    Bliuc D, Nguyen TV, Eisman JA, Center JR (2014) The impact of nonhip nonvertebral fractures in elderly women and men. J Clin Endocrinol Metab 99:415–423CrossRefGoogle Scholar
  33. 33.
    Ioannidis G, Flahive J, Pickard L et al (2013) Non-hip, non-spine fractures drive healthcare utilization following a fracture: the Global Longitudinal Study of Osteoporosis in Women (GLOW). Osteoporos Int 24:59–67CrossRefGoogle Scholar
  34. 34.
    Tran T, Bliuc D, van Geel T, et al. (2017) Population-wide impact of non-hip non-vertebral fractures on mortality. J Bone Miner ResGoogle Scholar
  35. 35.
    Sornay-Rendu E, Munoz F, Duboeuf F, Delmas PD (2005) Rate of forearm bone loss is associated with an increased risk of fracture independently of bone mass in postmenopausal women: the OFELY study. J Bone Miner Res 20:1929–1935CrossRefGoogle Scholar
  36. 36.
    Holloway KL, Henry MJ, Brennan-Olsen SL, Bucki-Smith G, Nicholson GC, Korn S, Sanders KM, Pasco JA, Kotowicz MA (2016) Non-hip and non-vertebral fractures: the neglected fracture sites. Osteoporos Int 27:905–913CrossRefGoogle Scholar
  37. 37.
    Kanis JA, Svedbom A, Harvey N, McCloskey EV (2014) The osteoporosis treatment gap. J Bone Miner Res 29:1926–1928CrossRefGoogle Scholar
  38. 38.
    Giangregorio L, Papaioannou A, Cranney A, Zytaruk N, Adachi JD (2006) Fragility fractures and the osteoporosis care gap: an international phenomenon. Semin Arthritis Rheum 35:293–305CrossRefGoogle Scholar
  39. 39.
    Curtis EM, Moon RJ, Harvey NC, Cooper C (2017) The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. BoneGoogle Scholar
  40. 40.
    De Laet C, Kanis JA, Oden A et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338CrossRefGoogle Scholar
  41. 41.
    Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Díez-Pérez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES, Glow Investigators. (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050Google Scholar
  42. 42.
    Edwards MH, Jameson K, Denison H, Harvey NC, Sayer AA, Dennison EM, Cooper C (2013) Clinical risk factors, bone density and fall history in the prediction of incident fracture among men and women. Bone 52:541–547CrossRefGoogle Scholar
  43. 43.
    Gnudi S, Sitta E, Lisi L (2009) Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab 27:479–484CrossRefGoogle Scholar
  44. 44.
    Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, Misra M (2010) Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 95:1247–1255CrossRefGoogle Scholar
  45. 45.
    Finkelstein EA, Chen H, Prabhu M, Trogdon JG, Corso PS (2007) The relationship between obesity and injuries among U.S. adults. Am J Health Promot 21:460–468CrossRefGoogle Scholar
  46. 46.
    Ivers RQ, Cumming RG, Mitchell P, Peduto AJ (2002) The accuracy of self-reported fractures in older people. J Clin Epidemiol 55:452–457CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  • Ana M. Rodrigues
    • 1
    • 2
    Email author
  • Mónica Eusébio
    • 3
  • Maria José Santos
    • 2
    • 4
  • Nélia Gouveia
    • 5
  • Viviana Tavares
    • 4
    • 6
  • Pedro S. Coelho
    • 7
  • Jorge M. Mendes
    • 7
  • Jaime C. Branco
    • 5
    • 8
  • Helena Canhão
    • 1
    • 9
  1. 1.Campus Sant’ Ana, Polo de Investigação, Nova Medical School, Edifício Amarelo, Rua do Instituto Bacteriológico no. 5Universidade Nova de LisboaLisbonPortugal
  2. 2.Faculdade de Medicina da Universidade de LisboaLisbonPortugal
  3. 3.Sociedade Portuguesa de ReumatologiaLisbonPortugal
  4. 4.Hospital Garcia de OrtaAlmadaPortugal
  5. 5.Chronic Diseases Research Centre (CEDOC), NOVA Medical SchoolUniversidade Nova de Lisboa (NMS-UNL)LisbonPortugal
  6. 6.APOROS—Associação Nacional Contra a OsteoporoseLisbonPortugal
  7. 7.NOVA Information Managment School (IMS)Universidade Nova de LisboaLisbonPortugal
  8. 8.Centro Hospitalar Lisboa Ocidental-EPE, Serviço de Reumatologia do Hospital Egas Moniz—LisboaLisbonPortugal
  9. 9.NOVA National School of Public Health, Universidade Nova de LisboaLisbonPortugal

Personalised recommendations