Archives of Osteoporosis

, 13:20 | Cite as

Higher step count is associated with greater bone mass and strength in women but not in men

  • Sanna TolonenEmail author
  • Harri Sievänen
  • Mirja Hirvensalo
  • Marika Laaksonen
  • Vera Mikkilä
  • Kristiina Pälve
  • Terho Lehtimäki
  • Olli Raitakari
  • Mika Kähönen
Original Article



In this cross-sectional study, peripheral bone traits were examined relative to total daily steps measured with pedometer. Higher number of steps was associated with greater bone values at the calcaneus and tibia in women, but not in men. In women, dose-dependent associations at the radius were congruent with the weight-bearing bones.


Habitual physical activity measured as daily steps may contribute to bone density and strength at the calcaneus and other weight-bearing bones.


Subgroups of 705–837 women and 480–615 men aged 31–46 years from the Cardiovascular Risk in Young Finns Study participated in the present study. Participants were instructed to use pedometer for 1 week, and the total daily steps, divided into tertiles, were evaluated relative to quantitative ultrasound-measured bone traits at the calcaneus and peripheral quantitative computed tomography-measured bone traits at the tibia and radius. Analysis of covariance was used to examine the between-group differences.


In women, significant dose-dependent between-group differences were found in the weight-bearing bones and in non-weight-bearing radius. The differences in broadband ultrasound attenuation and speed of sound at the calcaneus were 3.8 and 0.5% greater in women within the highest tertile of daily steps compared to the lowest tertile (p values for trend ≤ 0.04). In tibia, women in the highest tertile (> 8765 steps/day) had on average 1–5.4% greater bone cross-sectional area, bone mineral content (BMC), trabecular density, and bone strength index at the distal site and 1.6–2.7% greater bone areas, BMC and strength strain index (SSI) at the shaft compared to women with less daily steps (p values for trend ≤ 0.02). Similarly, in radius, BMC and BSI at the distal site, and bone cross-sectional areas, BMC and SSI at the shaft were 1.7–3.4% greater in women within the highest tertile of daily steps compared to their peers (p values for trend ≤ 0.04). In men, the differences in calcaneal, tibial, and radial bone traits were mainly non-significant between the tertiles of daily steps.


Observed significant positive associations between daily steps and various bone traits at the calcaneus, tibia, and radius in women suggest that habitual physical activity may benefit skeletal health in adulthood.


Peripheral quantitative computed tomography (pQCT) Quantitative ultrasound (QUS) Pedometer Step counts Physical activity 


Funding information

The Young Finns Study has been financially supported by the Academy of Finland: grants 286284, 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi) (ST), and 41071 (Skidi); the Social Insurance Institution of Finland; Competitive State Research Financing of the Expert Responsibility area of Kuopio, Tampere and Turku University Hospitals (grant X51001); Juho Vainio Foundation (ST); Paavo Nurmi Foundation; Finnish Foundation for Cardiovascular Research; Finnish Cultural Foundation (ST); Tampere Tuberculosis Foundation; Emil Aaltonen Foundation; Yrjö Jahnsson Foundation; Signe and Ane Gyllenberg Foundation, and Diabetes Research Foundation of Finnish Diabetes Association.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Kontulainen S, Sievänen H, Kannus P, Pasanen M, Vuori I (2003) Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 18:352–359CrossRefGoogle Scholar
  2. 2.
    Nikander R, Sievänen H, Uusi-Rasi K, Heinonen A, Kannus P (2006) Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. Bone 39:886–894CrossRefGoogle Scholar
  3. 3.
    Nikander R, Kannus P, Dastidar P, Hannula M, Harrison L, Cervinka T, Narra NG, Aktour R, Arola T, Eskola H, Soimakallio S, Heinonen A, Hyttinen J, Sievänen H (2009) Targeted exercises against hip fragility. Osteoporos Int 20:1321–1328CrossRefGoogle Scholar
  4. 4.
    Nikander R, Kannus P, Rantalainen T, Uusi-Rasi K, Heinonen A, Sievänen H (2010) Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporos Int 21:1687–1694CrossRefGoogle Scholar
  5. 5.
    Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR, American College of Sports Medicine (2004) American College of Sports Medicine position stand: physical activity and bone health. Med Sci Sports Exerc 36:1985–1996CrossRefGoogle Scholar
  6. 6.
    Nikander R, Lepola V, Karinkanta S, Sievänen H. Muutama tunti reipasta liikuntaa viikossa - vähentyvätkö lonkkamurtumat kolmanneksella? Suomen Lääkärilehti 22/2008 vsk 63: 2033–2040 (only summary in English)Google Scholar
  7. 7.
    Kitagawa J, Omasu F, Nakahara Y (2003) Effect of daily walking steps on ultrasound parameters of the calcaneus in elderly Japanese women. Osteoporos Int 14:219–224CrossRefGoogle Scholar
  8. 8.
    Kitagawa J, Nakahara Y (2008) Associations of daily walking steps with calcaneal ultrasound parameters and a bone resorption marker in elderly Japanese women. J Physiol Anthropol 27:295–300CrossRefGoogle Scholar
  9. 9.
    Foley S, Quinn S, Jones G (2010) Pedometer determined ambulatory activity and bone mass: a population-based longitudinal study in older adults. Osteoporos Int 21:1809–1816CrossRefGoogle Scholar
  10. 10.
    Heinonen A, Oja P, Sievänen H, Pasanen M, Vuori I (1998) Effect of two training regimens on bone mineral density in healthy perimenopausal women: a randomized controlled trial. J Bone Miner Res 13:483–490CrossRefGoogle Scholar
  11. 11.
    Farr JN, Lee VR, Blew RM, Lohman TG, Going SB (2011) Quantifying bone-relevant activity and its relation to bone strength in girls. Med Sci Sports Exerc 43:476–483CrossRefGoogle Scholar
  12. 12.
    Duckham RL, Rantalainen T, Ducher G, Hill B, Telford RD, Telford RM, Daly RM (2016) Effects of habitual physical activity and fitness on tibial cortical bone mass, structure and mass distribution in pre-pubertal boys and girls: the look study. Calcif Tissue Int 99:56–65CrossRefGoogle Scholar
  13. 13.
    Shephard RJ, Park H, Park S, Aoyagi Y (2017) Objective longitudinal measures of physical activity and bone health in older Japanese: the Nakanojo Study. J Am Geriatr Soc 65:800–807CrossRefGoogle Scholar
  14. 14.
    Juonala M, Viikari JS, Hutri-Kähönen N, Pietikäinen M, Jokinen E, Taittonen L, Marniemi J, Rönnemaa T, Raitakari OT (2004) The 21-year follow-up of the cardiovascular risk in Young Finns Study: risk factor levels, secular trends and east-west difference. J Intern Med 255:457–468CrossRefGoogle Scholar
  15. 15.
    Raitakari OT, Juonala M, Rönnemaa T, Keltikangas-Järvinen L, Räsänen L, Pietikäinen M, Hutri-Kähönen N, Taittonen L, Jokinen E, Marniemi J, Jula A, Telama R, Kähönen M, Lehtimäki T, Åkerblom HK, Viikari JS (2008) Cohort profile: the cardiovascular risk in Young Finns Study. Int J Epidemiol 37:1220–1226CrossRefGoogle Scholar
  16. 16.
    Hirvensalo M, Telama R, Schmidt MD, Tammelin TH, Xiaolin Y, Magnussen CG, Viikari JS, Raitakari OT (2011) Daily steps among Finnish adults: variation by age, sex, and socioeconomic position. Scand J Public Health 39:669–677CrossRefGoogle Scholar
  17. 17.
    Mansikkaniemi K, Juonala M, Taimela S, Hirvensalo M, Telama R, Huupponen R, Saarikoski L, Hurme M, Mallat Z, Benessiano J, Jula A, Taittonen L, Marniemi J, Kähönen M, Lehtimäki T, Rönnemaa T, Viikari J, Raitakari OT (2012) Cross-sectional associations between physical activity and selected coronary heart disease risk factors in young adults. The cardiovascular risk in Young Finns Study. Ann Med 44:733–744CrossRefGoogle Scholar
  18. 18.
    Laaksonen MML, Sievänen H, Tolonen S, Mikkilä V, Räsänen L, Viikari J, Lehtimäki T, Kähönen M, Raitakari OT (2010) The cardiovascular risk in Young Finns Study group. Determinants of bone strength and fracture incidence in adult Finns: cardiovascular risk in Young Finns Study (the GENDI pQCT study). Arch Osteoporos 5:119–130CrossRefGoogle Scholar
  19. 19.
    Sievänen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I (1998) Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 13:871–882CrossRefGoogle Scholar
  20. 20.
    Raiko JR, Viikari JS, Ilmanen A, Hutri-Kähönen N, Taittonen L, Jokinen E, Pietikäinen M, Jula A, Loo BM, Marniemi J, Lehtimäki T, Kähönen M, Rönnemaa T, Raitakari OT, Juonala M (2010) Follow-ups of the cardiovascular risk in Young Finns Study in 2001 and 2007: levels and 6-year changes in risk factors. J Intern Med 267:370–384CrossRefGoogle Scholar
  21. 21.
    Paalanen L, Männistö S, Virtanen MJ, Knekt P, Räsänen L, Montonen J, Pietinen P (2006) Validity of a food frequency questionnaire varied by age and body mass index. J Clin Epidemiol 59:994–1001CrossRefGoogle Scholar
  22. 22.
    National Institute for Health and Welfare, Nutrition Unit. Fineli. Finnish food composition database. Release, 10; 2009. Helsinki
  23. 23.
    Hulkkonen J, Aatola H, Pälve K, Lehtimäki T, Hutri-Kähönen N, Viikari JS, Raitakari OT, Kähönen M (2014) Determinants of exercise peak arterial blood pressure, circulatory power, and exercise cardiac power in a population based sample of Finnish male and female aged 30 to 47 years: the cardiovascular risk in Young Finns Study. BMC Cardiovasc Disord 14:35CrossRefGoogle Scholar
  24. 24.
    Feskanich D, Willett W, Colditz G (2002) Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA 288:2300–2306CrossRefGoogle Scholar
  25. 25.
    Martyn-St James M, Carroll S (2008) Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone 43:521–531CrossRefGoogle Scholar
  26. 26.
    Scheffler C, Gniosdorz B, Staub K, Rühli F (2014) Skeletal robustness and bone strength as measured by anthropometry and ultrasonography as a function of physical activity in young adults. Am J Hum Biol 26:215–220CrossRefGoogle Scholar
  27. 27.
    Tudor-Locke CE, Myers AM (2001) Methodological considerations for researhers and practitioners using pedometers to measure physical (ambulatory) activity. Res Q Exerc Sport 72:1–12CrossRefGoogle Scholar
  28. 28.
    Bhattoa HP, Konstantynowicz J, Laszcz N, Wojcik M, Pludowski P (2016) Vitamin D: musculoskeletal health. Rev Endocr Metab Disord 18:363–371. CrossRefGoogle Scholar
  29. 29.
    Uusi-Rasi K, Laaksonen M, Mikkilä V, Tolonen S, Raitakari OT, Viikari J, Lehtimäki T, Kähönen M, Sievänen H (2012) Overweight in childhood and bone density and size in adulthood. Osteoporos Int 23:1453–1461CrossRefGoogle Scholar
  30. 30.
    Telama R, Yang X, Viikari J, Välimäki I, Wanne O, Raitakari O (2005) Physical activity from childhood to adulthood: a 21-year tracking study. Am J Prev Med 28:267–273CrossRefGoogle Scholar
  31. 31.
    Tolonen S, Sievänen H, Mikkilä V, Telama R, Oikonen M, Laaksonen M, Viikari J, Kähönen M, Raitakari OT (2015) Adolescence physical activity is associated with higher tibial pQCT bone values in adulthood after 28-years of follow-up—he cardiovascular risk in Young Finns sudy. Bone 75:77–83CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  • Sanna Tolonen
    • 1
    • 2
    • 3
    Email author
  • Harri Sievänen
    • 4
  • Mirja Hirvensalo
    • 5
  • Marika Laaksonen
    • 1
  • Vera Mikkilä
    • 1
    • 6
  • Kristiina Pälve
    • 6
  • Terho Lehtimäki
    • 2
  • Olli Raitakari
    • 7
  • Mika Kähönen
    • 3
  1. 1.Department of Food and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Clinical Chemistry, Fimlab Laboratories and Faculty of Medicine and Life SciencesUniversity of TampereTampereFinland
  3. 3.Department of Clinical Physiology, Tampere University Hospital and Faculty of Medicine and Life SciencesUniversity of TampereTampereFinland
  4. 4.The UKK Institute for Health Promotion ResearchTampereFinland
  5. 5.Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
  6. 6.Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Heart CenterTurku University HospitalTurkuFinland
  7. 7.Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Department of Clinical Physiology and Nuclear MedicineTurku University HospitalTurkuFinland

Personalised recommendations