Chinese Journal of Integrative Medicine

, Volume 25, Issue 12, pp 939–947 | Cite as

Systems-Based Interactome Analysis for Hematopoiesis Effect of Angelicae sinensis Radix: Regulated Network of Cell Proliferation towards Hemopoiesis

  • Guang ZhengEmail author
  • He Zhang
  • Yun Yang
  • Ying-li Sun
  • Yan-jing Zhang
  • Ju-ping Chen
  • Ting Hao
  • Cheng Lu
  • Hong-tao Guo
  • Ge Zhang
  • Dan-ping Fan
  • Xiao-juan He
  • Ai-ping Lu
Interdisciplinary Knowledge



To explore the molecular-level mechanism on the hematopoiesis effect of Angelicae sinensis Radix (ASR) with systems-based interactome analysis.


This systems-based interactome analysis was designed to enforce the workflow of "ASR (herb)→compound→target protein→internal protein actions→ending regulated protein for hematopoiesis". This workflow was deployed with restrictions on regulated proteins expresses in bone marrow and anemia disease and futher validated with experiments.


The hematopoiesis mechanism of ASR might be accomplished through regulating pathways of cell proliferation towards hemopoiesis with cross-talking agents of spleen tyrosine kinase (SYK), Janus kinase 2 (JAK2), and interleukin-2-inducible T-cell kinase (ITK). The hematopoietic function of ASR was also validated by colony-forming assay performed on mice bone marrow cells. As a result, SYK, JAK2 and ITK were activated.


This study provides a new approach to systematically study and predict the therapeutic mechanism for ASR based on interactome analysis towards biological process with experimental validations.


Angelicae sinensis Radix interactome cell proliferation hemopoiesis regulation cross-talking agents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank GUO Bo-sheng, and HE Bing for their biomedical knowledge and beneficial discussions provided in the process of data pretreatments.

Author Contributions

Zheng G and Lu AP are responsible for the construction and analysis on interactome. He XJ and Fan DP are responsible for the experimental validation. Zhang H, Yang Y, Zhang YJ, Chen JP, and Hao T are responsible for data downloading, data format converting, data integrating, and double checking. Lu C, Guo HT, Sun YL and Zhang G are responsible for the biological analysis on interactome e.g., protein tissue expression, compound target protein, internal protein action, and overrepresented biological process. All authors read and approved the final manuscript.

Supplementary material

11655_2018_3003_MOESM1_ESM.docx (942 kb)
Supplementary material, approximately 941 KB.


  1. 1.
    Wei WL, Zeng R, Gu CM, Qu Y, Huang LF. Angelica sinensis in China—a review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol 2016;190:116–141.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ji P, Wei Y, Hua Y, Zhang X, Yao W, Ma Q, et al. A novel approach using metabolomics coupled with hematological and biochemical parameters to explain the enriching-blood effect and mechanism of unprocessed Angelica sinensis and its 4 kinds of processed products. J Ethnopharmacol 2018;211:101–116.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Zhou Z, ed. Internal medicine of traditional Chinese medicine. Beijing: China Press of Traditional Chinese Medicine; 2007.Google Scholar
  4. 4.
    Xiao H, Xiong L, Song X, Jin P, Chen L, Chen X, et al. Angelica sinensis polysaccharides ameliorate stressinduced premature senescence of hematopoietic cell via protecting bone marrow stromal cells from oxidative injuries caused by 5-fluorouracil. Int J Mol Sci 2017;18. pii: E2265.Google Scholar
  5. 5.
    Liu J, Xu CY, Cai SZ, Zhou Y, Li J, Jiang R, et al. Senescence effects of Angelica sinensis polysaccharides on human acute myelogenous leukemia stem and progenitor cells. Asian Pac J Cancer Prev 2014;14:6549–6956.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Li F, Tang R, Chen LB, Zhang KS, Huang XP, Deng CQ. Effects of Astragalus combined with angelica on bone marrow hematopoiesis suppression induced by cyclophosphamide in mice. Biol Pharm Bull 2017;40:598–609.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Younas F, Aslam B, Muhammad F, Mohsin M, Raza A, Faisal MN, et al. Haematopoietic effects of Angelica sinensis root cap polysaccharides against lisinopril-induced anaemia in albino rats. Pharm Biol 2017;55:108–113.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, et al. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 2015;347:1257601.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen CY. TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One 2011;6:e15939.CrossRefGoogle Scholar
  10. 10.
    Xue R, Fang Z, Zhang M, Yi Z, Wen C, Shi T. TCMID: Traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res 2013;41:D1089–D1095.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res 2014; 42:D1083–D1090.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 2014;42:D1091–D1097.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008;36:D901–D906.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, von Mering C, Jensen LJ, et al. STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res 2014;42:D401–D407.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    UniProt C. UniProt: a hub for protein information. Nucleic Acids Res 2015;43:D204–D212.CrossRefGoogle Scholar
  16. 16.
    Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S. IntAct: an open source molecular interaction database. Nucleic Acids Res 2004;32:D452–D455.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 2003;31:258–261.CrossRefGoogle Scholar
  18. 18.
    Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006;34:D535–D539.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0–the human metabolome database in 2013. Nucleic Acids Res 2013;41:D801–D807.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the human metabolome database. Nucleic Acids Res 2007;35:D521–D526.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gene Ontology C. The Gene Ontology (GO) project in 2006. Nucleic Acids Res 2006;34:D322–D326.CrossRefGoogle Scholar
  22. 22.
    Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 2013;41:D377–D386.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Huang da W, Sherman BT, Lempicki R. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Prot 2009;4:44–57.CrossRefGoogle Scholar
  24. 24.
    Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA. Online mendelian inheritance in man (OMIM). Human Mutat 2000;15:57–61.CrossRefGoogle Scholar
  25. 25.
    Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015;43:D512–D520.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stransky M, et al. CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 2008;36:D646–D650.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 2011;39:D691–D697.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kanehisa M. The KEGG database. Novartis foundation symposium 2002;247:91–101; discussion 101–103, 119–128, 152–244.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Protein analysis through evolutionary relationships. Available at: Accessed 29 June, 2016.
  30. 30.
    Inatome R, Yanagi S, Takano T, Yamamura H. A critical role for Syk in endothelial cell proliferation and migration. Biophysic Res Commun 2001;286:195–199.CrossRefGoogle Scholar
  31. 31.
    Oellerich T, Oellerich MF, Engelke M, Munch S, Mohr S, Nimz M, et al. β2 integrin-derived signals induce cell survival and proliferation of AML blasts by activating a Syk/STAT signaling axis. Blood 2013;121:3889–3899, S3881-S3866.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Chiou E, Zennadi R. Galphas proteins activate p72(Syk) and p60-c-Src tyrosine kinases to mediate sickle red blood cell adhesion to endothelium via LW-alphavbeta3 and CD44-CD44 interactions. Intern J BioCell Bio 2015;65:40–51.CrossRefGoogle Scholar
  33. 33.
    Xia TS, Shi JP, Ding Q, Liu XA, Zhao Y, Liu YX, et al. Reactivation of Syk gene by AZA suppresses metastasis but not proliferation of breast cancer cells. Med Oncol 2012;29:448–453.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Sprissler C, Belenki D, Maurer H, Aumann K, Pfeifer D, Klein C, et al. Depletion of STAT5 blocks TEL-SYK-induced APMF-type leukemia with myelofibrosis and myelodysplasia in mice. Blood Cancer J 2014;4:e240.CrossRefGoogle Scholar
  35. 35.
    Wilcox RA, Sun DX, Novak A, Dogan A, Ansell SM, Feldman AL. Inhibition of Syk protein tyrosine kinase induces apoptosis and blocks proliferation in T-cell non-Hodgkin’s lymphoma cell lines. Leukemia 2010;24:229–232.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Yang Y, Akada H, Nath D, Hutchison RE, Mohi G. Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm. Blood 2016;127:3410–3423.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Torka P, Hahn T, Bertolo J, Liu H, Ross M, Paplham P, et al. Autologous reconstitution leading to sustained JAK2-V617F negativity post allogeneic hematopoietic stem cell transplant in JAK2-V617F positive myelofibrosis. Bone Marrow Trans 2015;50:1480–1482.CrossRefGoogle Scholar
  38. 38.
    Silvennoinen O, Hubbard SR. Targeting the inactive conformation of JAK2 in hematological malignancies. Cancer Cell 2015;28:1–2.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wang T, Lu Y, Polk A, Chowdhury P, Zamalloa CM, Fujiwara H, et al. T-cell receptor signaling activates an ITK/NF-κB/GATA-3 axis in T-cell lymphomas facilitating resistance to chemotherapy. Clin Cancer Res 2017;23:2506–2515.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Xiao ZH, He F, Yao HL, Han JS, Liu ZW. Research of ITK regulation on mouse spleen lymphocytes proliferation and differentiation. Chin J Exp Clin Virol (Chin) 2009,23:269–271.Google Scholar
  41. 41.
    Liu C, Li J, Meng FY, Liang SX, Deng R, Li CK, et al. Polysaccharides from the root of Angelica sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway. BMC Comp Altern Med 2010;10:79.CrossRefGoogle Scholar
  42. 42.
    Kurosaki T. Functional dissection of BCR signaling pathways. Curr Opin Immun 2000;12:276–282.CrossRefGoogle Scholar
  43. 43.
    Turner M, Schweighoffer E, Colucci F, Di Santo JP, Tybulewicz VL. Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immun Today 2000;21:148–154.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Alsadeq A, Hobeika E, Medgyesi D, Kläsener K, Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. J Immunol 2014;193:268–276.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Le Roux D, Lankar D, Yuseff MI, Vascotto F, Yokozeki T, Faure-André G, et al. Syk-dependent actin dynamics regulate endocytic trafficking and processing of antigens internalized through the B-cell receptor. Mol Biol Cell 2007;18:3451–3462.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Akada H, Akada S, Hutchison RE, Sakamoto K, Wagner KU, Mohi G. Critical role of Jak2 in the maintenance and function of adult hematopoietic stem cells. Stem Cells 2014;32:1878–1889.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Park SO, Wamsley HL, Bae K, Hu Z, Li X, Choe SW, et al. Conditional deletion of Jak2 reveals an essential role in hematopoiesis throughout mouse ontogeny: implications for Jak2 inhibition in humans. PloS One 2013;8:e59675.CrossRefGoogle Scholar
  48. 48.
    Hain A, Krämer M, Linka RM, Nakhaei-Rad S, Ahmadian MR, Häussinger D, et al. IL-2 inducible kinase ITK is critical for HIV-1 infection of Jurkat T-cells. Sci Rep 2018;8:3217.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Khurana D, Arneson LN, Schoon RA, Dick CJ, Leibson PJ. Differential regulation of human NK cell-mediated cytotoxicity by the tyrosine kinase Itk. J Immunol 2007;178:3575–3582.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Huang W, Morales JL, Gazivoda VP, August A. Nonreceptor tyrosine kinases ITK and BTK negatively regulate mast cell proinflammatory responses to lipopolysaccharide. J Allergy Clin Immunol 2016;137:1197–1205.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Iyer AS, Morales JL, Huang W, Ojo F, Ning G, Wills E, et al. Absence of Tec family kinases interleukin-2 inducible T cell kinase (Itk) and Bruton’s tyrosine kinase (Btk) severely impairs Fc epsilonRI-dependent mast cell responses. J Biol Chem 2011;286:9503–9513.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Alme C, Satwani P, Alobeid B, Bhagat G, Kelly KM. Atypical clinical course in pediatric hodgkinlymphoma: association with germline mutations in interleukin-2-inducible T-cell kinase. J Pediatr Hematol Oncol 2015;37:507–508.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Chinese Journal of Integrated Traditional and Western Medicine Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guang Zheng
    • 1
    Email author
  • He Zhang
    • 1
  • Yun Yang
    • 1
  • Ying-li Sun
    • 2
  • Yan-jing Zhang
    • 1
  • Ju-ping Chen
    • 1
  • Ting Hao
    • 1
  • Cheng Lu
    • 3
  • Hong-tao Guo
    • 4
  • Ge Zhang
    • 5
  • Dan-ping Fan
    • 3
  • Xiao-juan He
    • 3
  • Ai-ping Lu
    • 5
  1. 1.Information Science and Engineering SchoolLanzhou UniversityLanzhouChina
  2. 2.School of BiologyLanzhou UniversityLanzhouChina
  3. 3.Institute of Basic Research in Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
  4. 4.Department of Rheumatismthe First Affiliated Hospital of Henan University of Traditional Chinese MedicineZhengzhouChina
  5. 5.School of Chinese MedicineHong Kong Baptist UniversityKowloon Tong, Kowloon, Hong Kong SARChina

Personalised recommendations