Advertisement

Effects of Mitochondrial Dysfunction via AMPK/PGC-1α Signal Pathway on Pathogenic Mechanism of Diabetic Peripheral Neuropathy and the Protective Effects of Chinese Medicine

  • Qian Zhang
  • Xiao-chun LiangEmail author
Review
  • 17 Downloads

Abstract

Diabetic peripheral neuropathy (DPN) is a progressive neurodegenerative disease of peripheral nervous system with high energy requirement. The adenosine monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) axis plays a key role in regulating mitochondrial energy metabolism. Increasing preclinical evidences have shown that inhibition of AMPK/PGC-1α pathway leading to mitochondrial dysfunction in neurons or Schwann cells contributes to neuron apoptosis, distal axonopathy and nerve demyelination in DPN. Some Chinese medicine formulae or extracts from herbs may have potential neuroprotective effects on DPN via activating AMPK/PGC-1α pathway and improving mitochondrial function.

Keywords

monophosphate-activated protein kinase peroxisome proliferator-activated receptor-γ coactivator 1α sirtuins diabetic peripheral neuropathy Chinese medicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Román-Pintos LM, Villegas-Rivera G, Rodrí guez-Carrizalez AD, et al. Diabetic polyneuropathy in type 2 diabetes mellitus: infl ammation, oxidative stress, and mitochondrial function. J Diabetes Res 2016;2016:3425617.CrossRefGoogle Scholar
  2. 2.
    Hajas G, Kissova V, Tirpakova A. A 10-yr follow-up study for the detection of peripheral neuropathy in young patients with type 1 diabetes. Pediatric Diabetes 2016;17:632–641.CrossRefGoogle Scholar
  3. 3.
    Singh R, Kishore L, Kaur N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol Res 2014;80:21–35.CrossRefGoogle Scholar
  4. 4.
    Volpe CMO, Villar-Delfino PH, Anjos PMFd, et al. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018;9:119.CrossRefGoogle Scholar
  5. 5.
    Yan L, Xie M, Lu H, et al. Anti-apoptotic effect of IGF1 on Schwann exposed to hyperglycemia is mediated by neuritin, a novel neurotrophic factor. Mol Neurobiol 2018;55:495–505.CrossRefGoogle Scholar
  6. 6.
    Manu MS, Rachana KS, Advirao GM. Altered expression of IRS2 and GRB2 in demyelination of peripheral neurons: Implications in diabetic neuropathy. Neuropeptides 2017;62:71–79.CrossRefGoogle Scholar
  7. 7.
    Fernyhough P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep 2015;15:89.CrossRefGoogle Scholar
  8. 8.
    Edwards JL, Quattrini A, Lentz SI, et al. Diabetes regulates mitochondrial biogenesis and fi ssion in neurons. Diabetologia 2010;53:160–169.CrossRefGoogle Scholar
  9. 9.
    Akude E, Zherebitskaya E, Roy Chowdhury SK, et al. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes 2011;60:288–297.CrossRefGoogle Scholar
  10. 10.
    Roy Chowdhury SK, Dobrowsky RT, Fernyhough P. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes. Mitochondrion 2011;11:845–854.CrossRefGoogle Scholar
  11. 11.
    Roy Chowdhury SK, Smith DR, Saleh A, et al. Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain 2012;135:1751–1766.CrossRefGoogle Scholar
  12. 12.
    Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect 2015;4:R1–R5.CrossRefGoogle Scholar
  13. 13.
    Rumora AE, Lentz SI, Hinder LM, et al. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB J 2018;32:1195–1207.CrossRefGoogle Scholar
  14. 14.
    Cardoso SM, Correia SC, Carvalho C, et al. Mitochondria in Alzheimer’s disease and diabetes-associated neurodegeneration: license to heal. Handb Exp Pharmacol 2017;240:281–308.CrossRefGoogle Scholar
  15. 15.
    Roy Chowdhury SK, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 2013;51:56–65.CrossRefGoogle Scholar
  16. 16.
    Wang S, Kobayashi K, Kogure Y, et al. Negative regulation of TRPA1 by AMPK in primary sensory neurons as a potential mechanism of painful diabetic neuropathy. Diabetes 2018;67:98–109.CrossRefGoogle Scholar
  17. 17.
    Schmeichel AM, Schmelzer JD, Low PA. Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 2003;52:165–171.CrossRefGoogle Scholar
  18. 18.
    Vincent AM, Edwards JL, McLean LL, et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 2010;120:477–489.CrossRefGoogle Scholar
  19. 19.
    Russell JW, Golovoy D, Vincent AM, et al. High glucoseinduced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 2002;16:1738–1748.CrossRefGoogle Scholar
  20. 20.
    Leinninger GM, Backus C, Sastry AM, et al. Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol Dis 2006;23:11–22.CrossRefGoogle Scholar
  21. 21.
    Schmidt RE, Parvin CA, Green KG. Synaptic ultrastructural alterations anticipate the development of neuroaxonal dystrophy in sympathetic ganglia of aged and diabetic mice. J Neuropathol Exp Neurol 2008;67:1166–1186.CrossRefGoogle Scholar
  22. 22.
    Hamid HS, Mervak CM, Mu€nch AE, et al. Hyperglycemiaand neuropathy-induced changes in mitochondria within sensory nerves. Ann Clin Transl Neurol 2014;1:799–812.CrossRefGoogle Scholar
  23. 23.
    Freeman OJ, Unwin RD, Dowsey AW, et al. Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy. Diabetes 2016;65:228–238.Google Scholar
  24. 24.
    Zhang T, Gao Y, Gong Y, et al. Tang-Luo-Ning improves mitochondrial antioxidase activity in dorsal root ganglia of diabetic rats: a proteomics study. Biomed Res Int 2017;2017: 8176089.Google Scholar
  25. 25.
    Guilford B, Ryals J, Lezi E, et al. Dorsal root ganglia mitochondrial biochemical changes in non-diabetic and streptozotocin-induced diabetic mice fed with a standard or high-fat diet. J Neurol Neurosci 2017;8:180.Google Scholar
  26. 26.
    Chandrasekaran K, Anjaneyulu M, Inoue T, et al. Mitochondrial transcription factor A regulation of mitochondrial degeneration in experimental diabetic neuropathy. Am J Physiol Endocrinol Metab 2015;309:E132–E141.CrossRefGoogle Scholar
  27. 27.
    Choi J, Chandrasekaran K, Inoue T, et al. PGC-1a regulation of mitochondrial degeneration in experimental diabetic neuropathy. Neurobiol Dis 2014;64:118–130.CrossRefGoogle Scholar
  28. 28.
    Sifuentes-Franco S, Pacheco-Moisés FnP, Rodríguez-Carrizalez AD, et al. The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy. J Diabetes Res 2017;2017:1673081.CrossRefGoogle Scholar
  29. 29.
    Malik R. Pathology of human diabetic neuropathy. Handb Clin Neurol 2014;126:249–259.CrossRefGoogle Scholar
  30. 30.
    Taylor A, Ribeiro-da-Silva A. GDNF levels in the lower lip skin in a rat model of trigeminal neuropathic pain: implications for nonpeptidergic fiber reinnervation and parasympathetic sprouting. Pain 2011;152:1502–1510.CrossRefGoogle Scholar
  31. 31.
    Bennett GJ, Liu GK, Xiao WH, et al. Terminal arbor degeneration (TAD): a novel lesion produced by the antineoplastic agent, paclitaxel. Eur J Neurosci 2011;33:1667–1676.CrossRefGoogle Scholar
  32. 32.
    Rinholm JE, Vervaeke K, Tadross MR, et al. Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths. Glia 2016;64:810–825.CrossRefGoogle Scholar
  33. 33.
    Nave KA. Myelination and support of axonal integrity by glia. Nature 2010;468:244–252.CrossRefGoogle Scholar
  34. 34.
    Gonçalves NdP, Vægter CB, Andersen H, et al. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol 2017;13:135–147.CrossRefGoogle Scholar
  35. 35.
    Viader A, Sasaki Y, Kim S, et al. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 2013;77:886–898.CrossRefGoogle Scholar
  36. 36.
    Ino D, Sagara H, Suzuki J, et al. Neuronal regulation of Schwann cell mitochondrial Ca2+ signaling during myelination. Cell Res 2015;12:1951–1959.Google Scholar
  37. 37.
    Saleh A, Roy Chowdhury SK, Smith DR, et al. Ciliary neurotrophic factor activates NF-kB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology 2013;65:65–73.CrossRefGoogle Scholar
  38. 38.
    Wu H, Deng X, Su Y, et al. PGC-1a, glucose metabolism and type 2 diabetes mellitus. J Endocrinol 2016;229:R99–R115.CrossRefGoogle Scholar
  39. 39.
    Hardie DG. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 2014;34:31–55.CrossRefGoogle Scholar
  40. 40.
    Chandrasekaran K, Muragundla A, Demarest TG, et al. mGluR2/3 activation of the SIRT1 axis preserves mitochondrial function in diabetic neuropathy. Ann Clin Transl Neurol 2017;4:844–858.CrossRefGoogle Scholar
  41. 41.
    Herzig Sb, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 2018;19:121–135.CrossRefGoogle Scholar
  42. 42.
    Hardie DG. Keeping the home fi res burning: AMP-activated protein kinase. J R Soc Interface 2018;15:20170774.CrossRefGoogle Scholar
  43. 43.
    Kukidome D, Nishikawa T, Sonoda K, et al. Activation of AMP-activated protein kinase reduces hyperglycemiainduced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 2006;55:120–127.CrossRefGoogle Scholar
  44. 44.
    Ma J, Yu H, Liu J, et al. Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotozin. Eur J Pharmacol 2015;764:599–606.CrossRefGoogle Scholar
  45. 45.
    Melemedjian OK, Asiedu MN, Tillu DV, et al. Targeting adenosine monophosphated-activated protein kinase (AMPK) in preclinical models reveals a potential mechanism for the treatment of neuropathic pain. Molecular Pain 2011;7:70.CrossRefGoogle Scholar
  46. 46.
    Yerra VG, Kumar A. Adenosine monophosphate-activated protein kinase abates hyperglycaemia-induced neuronal injunry in experimental models of diabetic neuropathy: Effects on mitochondrial biogenesis, autophagy and neuroinfl ammation. Mol Neurobiol 2017;54:2301–2312.CrossRefGoogle Scholar
  47. 47.
    Zhang C, Feng H, Wang J, et al. Globular CTRP3 promotes mitochondrial biogenesis in cardiomyocytes through AMPK/ PGC-1a pathway. Biochim Biophy Acta 2017;1861:3085–3094.CrossRefGoogle Scholar
  48. 48.
    Handschin C, Chin S, Li P, et al. Skeletal muscle fibertype switching, exercise intolerance, and myopathy in PGC-1 muscle-specific knock-out animals. J Biol Chem 2007;282:30014–30021.CrossRefGoogle Scholar
  49. 49.
    Rabinovitch RC, Samborska B, Faubert B, et al. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep 2017;21:1–9.CrossRefGoogle Scholar
  50. 50.
    Austin S, St-Pierre J. PGC1a and mitochondrial metabolism—emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 2012;125:4963–4971.CrossRefGoogle Scholar
  51. 51.
    Ng CH, Basil AH, Hang L, et al. Genetic or pharmacological activation of the drosophila PGC-1a ortholog spargel rescues the disease phenotypes of genetic models of Parkinson’s disease. Neurobiol Aging 2017;55:33–37.CrossRefGoogle Scholar
  52. 52.
    Török R, Kónya JA, Zádori D, et al. mRNA expression levels of PGC-1a in a transgenic and a toxin model of Huntington’s disease. Cell Mol Neurobiol 2015;35: 293–301.CrossRefGoogle Scholar
  53. 53.
    Pohland M, Pellowska M, Asseburg H, et al. MH84 improves mitochondrial dysfunction in a mouse model of early Alzheimer’s disease. Alzheimers Res Ther 2018;10:18.CrossRefGoogle Scholar
  54. 54.
    Qin W, Haroutunian V, Katsel P, et al. PGC-1 alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol 2009;66:352–361.CrossRefGoogle Scholar
  55. 55.
    Krishnan J, Danzer C, Simka T, et al. Dietary obesityassociated Hif1a activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev 2012;26:259–270.CrossRefGoogle Scholar
  56. 56.
    Yuan Y, Shi M, Li L, et al. Mesenchymal stem cellconditioned media ameliorate diabetic endothelial dysfunction by improving mitochondrial bioenergetics via the Sirt1/AMPK/ PGC-1a pathway. Clin Sci 2016;130:2181–2198.CrossRefGoogle Scholar
  57. 57.
    Ido Y, Nyengaard JR, Chang K, et al. Early neural and vascular dysfunctions in diabetic rats are largely sequelae of increased sorbitol oxidation. Antioxid Redox Signal 2010;12:39–51.CrossRefGoogle Scholar
  58. 58.
    Giralt A, Villarroya F. SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J 2012;444:1–10.CrossRefGoogle Scholar
  59. 59.
    Magnifico Sb, Saias L, Deleglise Brr, et al. NAD+ acts on mitochondrial SirT3 to prevent axonal caspase activation and axonal degeneration. FASEB J 2013;27:4712–22.CrossRefGoogle Scholar
  60. 60.
    Yu L, Gong B, Duan W, et al. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPKPGC-1a-SIRT3 signaling. Sci Rep 2017;2017:41337.CrossRefGoogle Scholar
  61. 61.
    Yu X, Zhang L, Yang X, et al. Salvianolic acid A protects the peripheral nerve function in diabetic rats through regulation of the AMPK-PGC1a-Sirt3 axis. Mlecules 2012;17:11216–11228.CrossRefGoogle Scholar
  62. 62.
    Feige JN, Auwerx J. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol 2007;17:292–301.CrossRefGoogle Scholar
  63. 63.
    Asiedu MN, Dussor G, Price TJ. Targeting AMPK for the alleviation of pathological pain. EXS 2016;107:257–285.Google Scholar
  64. 64.
    Aghanoori MR, Smith DR, Roy Chowdhury SR, et al. Insulin prevents aberrant mitochondrial phenotype in sensory neurons of type 1 diabetic rats. Exp Neurol 2017;297:148–157.CrossRefGoogle Scholar
  65. 65.
    Price TJ, Das V, Dussor G. Adenosine monophosphateactivated protein kinase (AMPK) activators for the prevention, treatment and potential reversal of pathological pain. Curr Drug Targets 2016;17:908–920.CrossRefGoogle Scholar
  66. 66.
    Cho YR, Lim JH, Kim MY, et al. Therapeutic effects of fenofi brate on diabetic peripheral neuropathy by improving endothelial and neural survival in db/db mice. PLoS One 2014;9:e83204.CrossRefGoogle Scholar
  67. 67.
    Friedemann T, Otto B, Klä tschke K, et al. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells. J Ethnopharmacol 2014;155:607–615.CrossRefGoogle Scholar
  68. 68.
    Sun LQ, Zhao J, Zhang TT, et al. Protective effects of salvianolic acid B on Schwann cells apoptosis induced by high glucose. Neurochem Res 2012;37:996–1010.CrossRefGoogle Scholar
  69. 69.
    Friedemann T, Schumacher U, Tao Y, et al. Neuroprotective activity of coptisine from Coptis Chinensis (Franch). Evid Based Complement Alternat Med 2015;2015:827308.CrossRefGoogle Scholar
  70. 70.
    Cicero AFG, Baggioni A. Berberine and its role in chronic disease. Adv Exp Med Biol 2016;928:27–45.CrossRefGoogle Scholar
  71. 71.
    Yerra VG, Kalvala AK, Sherkhane B, et al. Adenosine monophosphate-activated protein kinase modulation by berberine attenuates mitochondrial deficits and redox imbalance in experimental diabetic neuropathy. Neuropharmacology 2018;131:256e70.CrossRefGoogle Scholar
  72. 72.
    Han J, Tan P, Li Z, et al. Fuzi attenuates diabetic neuropathy in rats and protects shwann cells from apoptosis induced by high glucose. PLoS One 2014;9:e86539.CrossRefGoogle Scholar
  73. 73.
    Wang BB, Wang JL, Yuan J, et al. Sugar composition analysis of Fuzi Polysaccharides by HPLC-MSn and their protective effects on Schwann cells exposed to high glucose. Molecules 2016;21:1496.CrossRefGoogle Scholar
  74. 74.
    Lu X, Zhang L, Li P, et al. The protective effects of compatibility of Aconiti Lateralis Radix Praeparata and Zingiberis Rhizoma on rats with heart failure by enhancing mitochondrial biogenesis via Sirt1/PGC-1a pathway. Biomed Pharmacother 2017;92:651–60.CrossRefGoogle Scholar
  75. 75.
    Sadi Gk, Konat D. Resveratrol regulates oxidative biomarkers and antioxidant enzymes in the brain of streptozotocininduced diabetic rats. Pharm Biol 2016;54:1156–1163.Google Scholar
  76. 76.
    Xue B, Wang L, Zhang Z, et al. Puerarin may protect against Schwann cell damage induced by glucose fl uctuation. J Nat Med 2017;71:472–481.CrossRefGoogle Scholar
  77. 77.
    Kim J, Yang G, Kim Y, et al. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med 2016;48:e224.CrossRefGoogle Scholar
  78. 78.
    Kim T, Davis J, Zhang AJ, et al. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun 2009;388:377–382.CrossRefGoogle Scholar
  79. 79.
    Ahn J, Lee H, Kim S, et al. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 2008;373:545–549.CrossRefGoogle Scholar
  80. 80.
    Liu K, Mei F, Wang Y, et al. Quercetin oppositely regulates insulin-mediated glucose disposal in skeletal muscle under normal and inflammatory conditions: the dual roles of AMPK activation. Food Res 2016;60:551–565.Google Scholar

Copyright information

© Chinese Association of the Integration of Traditional and Western Medicine 2018

Authors and Affiliations

  1. 1.Department of Traditional Chinese Medicine, Translational Medicine CenterPeking Union Medical College Hospital, Chinese Academy of Medical SciencesBeijingChina

Personalised recommendations