Advertisement

Gli scaffold in medicina rigenerativa

  • Giovanni Felice TrincheseEmail author
  • Emanuele Calabrese
  • Giampiero Calabrò
  • Francesco Lisanti
Aggiornamenti

Scaffolds in regenerative medicine

Abstract

Scaffolds are artificial structures capable of supporting the formation of three-dimensional tissue. Their use in the orthopaedic field appears to be a powerful weapon for treating numerous diseases. Unfortunately, despite great efforts in the realisation of the ideal scaffold, their use in clinical practice is still limited due to the many characteristics that it must possess. The purpose of this review was to provide a critical perspective of scaffolds in the orthopaedic field, highlighting their main characteristics and the methods for their production.

Notes

Conflitto di interesse

Gli autori Giovanni Felice Trinchese, Emanuele Calabrese, Giampiero Calabrò e Francesco Lisanti dichiarano di non aver alcun conflitto di interesse.

Consenso informato e conformità agli standard etici

Tutte le procedure descritte nello studio e che hanno coinvolto esseri umani sono state attuate in conformità alle norme etiche stabilite dalla dichiarazione di Helsinki del 1975 e successive modifiche. Il consenso informato è stato ottenuto da tutti i pazienti inclusi nello studio.

Human and Animal Rights

L’articolo non contiene alcuno studio eseguito su esseri umani e su animali da parte degli autori.

Bibliografia

  1. 1.
    Henkel J, Woodruff MA, Epari DR et al. (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 1(3):216–248 CrossRefGoogle Scholar
  2. 2.
    Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C Mater Biol Appl 31(7):1245–1256 CrossRefGoogle Scholar
  3. 3.
    Agarwal R, García AJ (2015) Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 94:53–62 CrossRefGoogle Scholar
  4. 4.
    Navarro M, Michiardi A, Castaño O, Planell JA (2008) Biomaterials in orthopaedics. J R Soc Interface 5(27):1137–1158 CrossRefGoogle Scholar
  5. 5.
    Bouet G, Marchat D, Cruel M et al. (2015) In vitro three-dimensional bone tissue models: from cells to controlled and dynamic environment. Tissue Eng, Part B, Rev 21(1):133–156 CrossRefGoogle Scholar
  6. 6.
    Kumbar S, Laurencin C, Deng M (eds) (2014) Natural and Synthetic Biomedical Polymers. Elsevier, Amsterdam Google Scholar
  7. 7.
    Dias MR, Guedes JM, Flanagan CL et al. (2014) Optimization of scaffold design for bone tissue engineering: a computational and experimental study. Med Eng Phys 36(4):448–457 CrossRefGoogle Scholar
  8. 8.
    Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408 CrossRefGoogle Scholar
  9. 9.
    O’Brien FJ (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14(3):88–95 CrossRefGoogle Scholar
  10. 10.
    Hofmann S, Garcia-Fuentes M (2011) Bioactive scaffolds for the controlled formation of complex skeletal tissues, regenerative medicine and tissue engineering—cells and Biomaterials. In: IntechOpen.  https://doi.org/10.5772/22061 Google Scholar
  11. 11.
    Blokhuis TJ, Arts JJ (2011) Bioactive and osteoinductive bone graft substitutes: definitions, facts and myths. Injury 42(Suppl 2):S26–29 CrossRefGoogle Scholar
  12. 12.
    Barradas AM, Yuan H, van Blitterswijk CA, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cells Mater 21:407–429 CrossRefGoogle Scholar
  13. 13.
    Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A (2015) Smart scaffolds in bone tissue engineering: a systematic review of literature. World J Stem Cells 7(3):657–668 CrossRefGoogle Scholar
  14. 14.
    Yuan N, Rezzadeh KS, Lee JC (2015) Biomimetic scaffolds for osteogenesis. Recept Clin Investig 2(3):898 Google Scholar
  15. 15.
    Atesok K, Doral MN, Karlsson J et al. (2016) Multilayer scaffolds in orthopaedic tissue engineering. Knee Surg Sports Traumatol Arthrosc 24(7):2365–2373 CrossRefGoogle Scholar
  16. 16.
    Grigolo B, Cavallo C, Desando G et al. (2015) Novel nano-composite biomimetic biomaterial allows chondrogenic and osteogenic differentiation of bone marrow concentrate derived cells. J Mater Sci, Mater Med 26(4):173 CrossRefGoogle Scholar
  17. 17.
    Pignatello R (ed) Advances in biomaterials science and biomedical applications. BoD–Books on Demand Google Scholar
  18. 18.
    Stratton S, Shelke NB, Hoshino K et al. (2016) Bioactive polymeric scaffolds for tissue engineering. Bioact Mater 1(2):93–108 CrossRefGoogle Scholar
  19. 19.
    Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:290602 CrossRefGoogle Scholar
  20. 20.
    Gao C, Deng Y, Feng P et al. (2014) Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int J Mol Sci 15(3):4714–4732 CrossRefGoogle Scholar
  21. 21.
    Matassi F, Nistri L, Chicon Paez D, Innocenti M (2011) New biomaterials for bone regeneration. Clin Cases Miner Bone Metab 8(1):21–24 Google Scholar
  22. 22.
    Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K et al. (2014) Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 3:61–102 CrossRefGoogle Scholar
  23. 23.
    Bajaj P, Schweller RM, Khademhosseini A et al. (2014) 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 16:247–276 CrossRefGoogle Scholar
  24. 24.
    Torabi K, Farjood E, Hamedani S (2015) Rapid prototyping technologies and their applications in prosthodontics, a review of literature. J Dent Shiraz Iran 16(1):1–9 Google Scholar
  25. 25.
    Sah MK, Sadanand J, Pramanik K (2012) Computational approaches in tissue engineering. Int J Comput Appl 975:8887 Google Scholar
  26. 26.
    Qiu K, Chen B, Nie W et al. (2016) Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly(L-lactic acid)/poly(\(\varepsilon \)-caprolactone) composite scaffold for bone tissue engineering. ACS Appl Mater Interfaces 8(6):4137–4148 CrossRefGoogle Scholar
  27. 27.
    Subia B, Kundu J, Kundu SC (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue engineering. In: IntechOpen.  https://doi.org/10.5772/8581 Google Scholar
  28. 28.
    Aboudzadeh N, Imani M, Shokrgozar MA et al. (2010) Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. J Biomed Mater Res, Part A 94(1):137–145 CrossRefGoogle Scholar
  29. 29.
    Li L, Zhou G, Wang Y et al. (2015) Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 37:218–229 CrossRefGoogle Scholar
  30. 30.
    Schubert C, Van Langeveld MC, Donoso LA (2014) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 98(2):159–161 CrossRefGoogle Scholar
  31. 31.
    Castro NJ, O’Brien J, Zhang LG (2015) Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds. Nanoscale 7(33):14010–14022 CrossRefGoogle Scholar
  32. 32.
    Heller C, Schwentenwein M, Russmueller G et al. (2009) Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing. J Polym Sci, Part A 47(24):6941–6954 CrossRefGoogle Scholar
  33. 33.
    Li L, Yu F, Shen S et al. (2017) In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci Rep 7(1):9416 CrossRefGoogle Scholar
  34. 34.
    Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT (2017) Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med 6(10):1940–1948 CrossRefGoogle Scholar
  35. 35.
    Mandrycky C, Wang Z, Kim K, Kim D-H (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434 CrossRefGoogle Scholar
  36. 36.
    Liu Y, Lim J, Teoh S-H (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31(5):688–705 CrossRefGoogle Scholar
  37. 37.
    Paul A, Manoharan V, Krafft D et al. (2016) Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B 4(20):3544–3554 CrossRefGoogle Scholar
  38. 38.
    Sawkins MJ, Mistry P, Brown BN et al. (2015) Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication 7(3):035004 CrossRefGoogle Scholar
  39. 39.
    Gao G, Yonezawa T, Hubbell K et al. (2015) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 10(10):1568–1577 CrossRefGoogle Scholar
  40. 40.
    Fedorovich NE, Schuurman W, Wijnberg HM et al. (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44 CrossRefGoogle Scholar
  41. 41.
    Oliveira H, Dusserre N, Hakobyan D, Fricain J-C (2018) Laser-assisted bioprinting: a novel approach for bone regeneration applications. Med Sci MS 34(2):125–128 Google Scholar

Copyright information

© Società Italiana Ortopedici Traumatologi Ospedalieri d’Italia 2019

Authors and Affiliations

  • Giovanni Felice Trinchese
    • 1
    Email author
  • Emanuele Calabrese
    • 1
  • Giampiero Calabrò
    • 1
  • Francesco Lisanti
    • 1
  1. 1.Unità Operativa Complessa di Ortopedia e TraumatologiaOspedale “San Francesco D’Assisi”Oliveto Citra (SA)Italia

Personalised recommendations