Advertisement

Advances in Data Analysis and Classification

, Volume 12, Issue 3, pp 637–656 | Cite as

A divisive clustering method for functional data with special consideration of outliers

  • Ana Justel
  • Marcela Svarc
Regular Article
  • 162 Downloads

Abstract

This paper presents DivClusFD, a new divisive hierarchical method for the non-supervised classification of functional data. Data of this type present the peculiarity that the differences among clusters may be caused by changes as well in level as in shape. Different clusters can be separated in different subregion and there may be no subregion in which all clusters are separated. In each step of division, the DivClusFD method explores the functions and their derivatives at several fixed points, seeking the subregion in which the highest number of clusters can be separated. The number of clusters is estimated via the gap statistic. The functions are assigned to the new clusters by combining the k-means algorithm with the use of functional boxplots to identify functions that have been incorrectly classified because of their atypical local behavior. The DivClusFD method provides the number of clusters, the classification of the observed functions into the clusters and guidelines that may be for interpreting the clusters. A simulation study using synthetic data and tests of the performance of the DivClusFD method on real data sets indicate that this method is able to classify functions accurately.

Keywords

Hierarchical clustering Functional boxplot Gap statistic 

Mathematics Subject Classification

62H30 

Notes

Acknowledgements

We wish to thank the editors and four anonymous referees who have carefully reviewed the paper. Their suggestions and comments have helped us to improve the quality of this paper.

References

  1. Abraham C, Cornillon PA, Matzner-Lber E, Molinari N (2003) Unsupervised curves clustering using B-Splines. Scand J Stat 30:581–595. doi: 10.1111/1467-9469.00350 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Alonso AM, Casado D, Romo J (2012) Supervised classification for functional data: a weighted distance aprproach. Comput Stat Data Anal 56:2334–2346. doi: 10.1016/j.csda.2012.01.013 CrossRefzbMATHGoogle Scholar
  3. Berrendero JR, Justel A, Svarc M (2011) Principal components for multivariate functional data. Comput Stat Data Anal 55:2619–2634. doi: 10.1016/j.csda.2011.03.011 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bouveyron C, Jacques J (2011) Model-based clustering of time series in group-specific functional subspaces. Adv Data Anal Classif 5:281–300. doi: 10.1007/s11634-011-0095-6 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classification archive. http://www.cs.ucr.edu/~eamonn/time_series_data/
  6. Chiou JM, Li PL (2011) Functional clustering and identifying substructures of longitudinal data. J R Stat Soc B 69:679–699. doi: 10.1111/j.1467-9868.2007.00605.x MathSciNetCrossRefGoogle Scholar
  7. Febrero-Bande M, Oviedo de la Fuente M (2012) Statistical computing in functional data analysis: the R Package fda.usc. J Stat Softw 51(4):1–28. doi: 10.18637/jss.v051.i04 CrossRefGoogle Scholar
  8. Fraiman R, Justel A, Svarc M (2008) Selection of variables for cluster analysis and classification rules. J Am Stat Assoc 103:1294–1303. doi: 10.1198/016214508000000544 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Ieva F, Paganoni AM, Pigoli D, Vitelli V (2013) Multivariate functional clustering for the morphological analysis of electrocardiograph curves. J R Stat Soc Ser C (Appl Stat) 62:401–418. doi: 10.1111/j.1467-9876.2012.01062.x MathSciNetCrossRefGoogle Scholar
  10. Jacques J, Preda C (2013) Funclust: a curves clustering method using functional random variable density approximation. Neurocomputing 171:112–164. doi: 10.1016/j.neucom.2012.11.042 CrossRefGoogle Scholar
  11. Jacques J, Preda C (2014a) Model-based clustering for multivariate functional data. Comput Stat Data Anal 71:92–106. doi: 10.1016/j.csda.2012.12.004 MathSciNetCrossRefGoogle Scholar
  12. Jacques J, Preda C (2014b) Functional data clustering: a survey. Adv Data Anal Classif 8(3):231–255. doi: 10.1007/s11634-013-0158-y MathSciNetCrossRefGoogle Scholar
  13. James G, Sugar C (2003) Clustering for sparsely sampled functional data. J Am Stat Assoc 98:397–408. doi: 10.1198/016214503000189 MathSciNetCrossRefzbMATHGoogle Scholar
  14. Keogh E, Pazzani M (2001) Dynamic time warping with higher order features. In: First SIAM international conference on data mining (SDM’2001), Chicago, IL, USA. doi: 10.1007/s10618-015-0418-x MathSciNetCrossRefGoogle Scholar
  15. López-Pintado S, Romo J (2009) On the concept of depth for functional data. J Am Stat Assoc 104:718–734. doi: 10.1198/jasa.2009.0108 MathSciNetCrossRefzbMATHGoogle Scholar
  16. López-Pintado S, Sun Y, Lin JK, Genton MG (2014) Simplicial band depth for multivariate functional data. Adv Data Anal Classif 8:321–338. doi: 10.1007/s11634-014-0166-6 MathSciNetCrossRefGoogle Scholar
  17. Mosler K (2013) Depth statistics. In: Becker C, Fried R, Kuhnt S (eds) Robustness and complex data structures. Springer, Berlin, pp 17–34. doi: 10.1007/978-3-642-35494-6_2 CrossRefGoogle Scholar
  18. Ray S, Mallick B (2006) Functional clustering by Bayesian wavelet methods. J R Stat Soc Ser B Stat Methodol 68(2):305–332. doi: 10.1111/j.1467-9868.2006.00545.x MathSciNetCrossRefzbMATHGoogle Scholar
  19. Ramsay J, Hooker G, Graves S (2009) Functional data analysis with R and Matlab. Springer, Berlin. doi: 10.1007/978-0-387-98185-7 CrossRefzbMATHGoogle Scholar
  20. Ramsay J, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York. doi: 10.1111/j.1541-0420.2007.00743_1.x CrossRefGoogle Scholar
  21. Sangalli LM, Secchi P, Vantini S, Vitelli V (2010a) \(k\)-means alignment for curve clustering. Comput Stat Data Anal 54:1219–1233. doi: 10.1016/j.csda.2009.12.008 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Sangalli LM, Secchi P, Vantini S, Vitelli V (2010b) Functional clustering and alignment methods with applications. Commun Appl Ind Math 1:205–224. doi: 10.1685/2010CAIM486 MathSciNetCrossRefzbMATHGoogle Scholar
  23. Serban N, Wasserman L (2005) CATS: cluster analysis by transformation and smoothing. J Am Stat Assoc 100:990–999. doi: 10.1198/016214504000001574 CrossRefzbMATHGoogle Scholar
  24. Sun Y, Genton MG (2011) Functional boxplots. J Comput Graph Stat 20:316–334. doi: 10.1198/jcgs.2011.09224 MathSciNetCrossRefGoogle Scholar
  25. Tarpey T, Kinateder KKJ (2003) Clustering functional data. J Classif 20:93–114. doi: 10.1007/s11634-013-0158-y CrossRefGoogle Scholar
  26. Tibshirani R, Walther G, Hastie T (2001) Estimating the number of data clusters via the gap statistic. J R Stat Soc B 63:411–423. doi: 10.1111/1467-9868.00293 CrossRefzbMATHGoogle Scholar
  27. Tokushige S, Yadohisa H, Inada K (2007) Crisp and Fuzzy \(k\)-means clustering algorithms for multivariate functional data. Comput Stat 21:1–16. doi: 10.1007/s00180-006-0013-0 MathSciNetCrossRefzbMATHGoogle Scholar
  28. Tuddenham RD, Snyder MM (1954) Physical growth of California boys and girls from birth to eighteen years. Tech. Rep. 1, University of California Publications in Child DevelopmentGoogle Scholar
  29. Tukey J (1977) Exploratory data analysis. Addison-Westley, Boston. doi: 10.1002/bimj.4710230408 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversidad Autònoma de MadridMadridSpain
  2. 2.UC3M-BS Institute of Financial Big DataUniversidad Carlos III de MadridMadridSpain
  3. 3.Department of Mathematics and SciencesUniversidad de San AndrésVictoriaArgentina
  4. 4.CONICETBuenos AiresArgentina

Personalised recommendations