International Journal of Automation and Computing

, Volume 16, Issue 6, pp 800–811 | Cite as

A Wide Learning Approach for Interpretable Feature Recommendation for 1-D Sensor Data in IoT Analytics

  • Snehasis BanerjeeEmail author
  • Tanushyam Chattopadhyay
  • Utpal Garain
Research Article


This paper presents a state of the art machine learning-based approach for automation of a varied class of Internet of things (IoT) analytics problems targeted on 1-dimensional (1-D) sensor data. As feature recommendation is a major bottleneck for general IoT-based applications, this paper shows how this step can be successfully automated based on a Wide Learning architecture without sacrificing the decision-making accuracy, and thereby reducing the development time and the cost of hiring expensive resources for specific problems. Interpretation of meaningful features is another contribution of this research. Several data sets from different real-world applications are considered to realize the proof-of-concept. Results show that the interpretable feature recommendation techniques are quite effective for the problems at hand in terms of performance and drastic reduction in development time.


Feature engineering sensor data analysis Internet of things (IoT) analytics interpretable learning automation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Eddy. Gartner: 21 Billion IoT Devices to Invade by 2020. InformationWeek, 2015.Google Scholar
  2. [2]
    P. Raj, A. C. Raman. The Internet of Things: Enabling Technologies, Platforms, and Use Cases, New York, USA: CRC Press, 2017.CrossRefGoogle Scholar
  3. [3]
    M. C. Zhou, G. Fortino, W. M. Shen, J. Mitsugi, J. Jobin, R. Bhattacharyya. Guest editorial special section on advances and applications of internet of things for smart automated systems. IEEE Transactions on Automation Science and Engineering, vol. 13, no. 3, pp. 1225–1229, 2016. DOI: Scholar
  4. [4]
    K. Cao, G. Xu, J. L. Zhou, T. Q. Wei, M. S. Chen, S. Y. Hu. QoS-adaptive approximate real-time computation for mobility-aware IoT lifetime optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, to be published. DOI: Scholar
  5. [5]
    M. Khakifirooz, C. F. Chien, Y. J. Chen. Bayesian inference for mining semiconductor manufacturing big data for yield enhancement and smart production to empower industry 4.0. Applied Soft Computing, vol. 68, pp. 990–999, 2018. DOI: Scholar
  6. [6]
    S. Banerjee, T. Chattopadhyay, A. Pal, U. Garain. Automation of feature engineering for IoT analytics. ACM SIGBED Review, vol. 15, no. 2, pp. 24–30, 2018. DOI: Scholar
  7. [7]
    M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, A. P. Sheth. Machine learning for internet of things data analysis: A survey. Digital Communications and Networks, vol. 4, no. 3, pp. 161–175, 2018. DOI: Scholar
  8. [8]
    D. Jaiswal, P. Datta, S. Dey, H. Paul, T. Chattopadhyay, A. Ghose, A. Singh, A. Pal, A. Mukherjee. Demo: A smart framework for IoT analytic workflow development. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, ACM, Seoul, South Korea, pp. 455–456, 2015. DOI: Scholar
  9. [9]
    S. Dey, A. Mukherjee. Towards automation of IoT analytics: An ontology-driven approach. Application Development and Design: Concepts, Methodologies, Tools, and Applications, Information Resources Management Association, Ed., Hershey, USA: IGI Global, pp. 947–971, 2018. DOI: Scholar
  10. [10]
    N. Dey, A. E. Hassanien, C. Bhatt, A. S. Ashour, S. C. Satapathy. Internet of Things and Big Data Analytics Toward Next-generation Intelligence, Cham, Germany: Springer, 2018. DOI: Scholar
  11. [11]
    E. J. Humphrey, J. P. Bello, Y. LeCun. Moving beyond feature design: Deep architectures and automatic feature learning in music informatics. In Proceedings of the 13th International Society for Music Information Retrieval Conference, ISMIR, Porto, Portugal, pp. 403–408, 2012.Google Scholar
  12. [12]
    T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. L. Liao. Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing, vol. 14, no. 5, pp. 503–519, 2017. DOI: Scholar
  13. [13]
    H. T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. C. Hong, V. Jain, X. B. Liu, H. Shah. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, ACM, Boston, USA, pp. 7–10, 2016. DOI: Scholar
  14. [14]
    M. Elgendi. On the analysis of fingertip photoplethysmogram signals. Current Cardiology Reviews, vol. 8, no. 1, pp. 14–25, 2012. DOI: Scholar
  15. [15]
    A. Ganguly, M. Sharma. Detection of pathological heart murmurs by feature extraction of phonocardiogram signals. Journal of Applied and Advanced Research, vol. 2, no. 4, pp. 200–205, 2017. DOI: Scholar
  16. [16]
    A. Ng. Machine Learning Yearning. [Online], Available:, 2017.
  17. [17]
    P. J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, vol. 20, pp. 53–65, 1987. DOI: Scholar
  18. [18]
    O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, vol. 46, no. 1–3, pp. 131–159, 2002. DOI: Scholar
  19. [19]
    T. Eitrich, B. Lang. Efficient optimization of support vector machine learning parameters for unbalanced datasets. Journal of Computational and Applied Mathematics, vol. 196, no. 2, pp. 425–436, 2006. DOI: Scholar
  20. [20]
    P. Domingos. A few useful things to know about machine learning. Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012. DOI: 10.1145/2347736.2347755.CrossRefGoogle Scholar
  21. [21]
    H. C. Peng, F. H. Long, C. Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005. DOI: 10.1109/TPAMI.2005.159.CrossRefGoogle Scholar
  22. [22]
    P. Maji, P. Garai. Fuzzy-rough MRMS method for relevant and significant attribute selection. Advances on Computational Intelligence, S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, R. R. Yager, Eds., Berlin Heidelberg, Germany: Springer, pp. 310–320, 2012. DOI: Scholar
  23. [23]
    J. A. Mangai, V. S. Kumar, S. A. alias Balamurugan. A novel feature selection framework for automatic web page classification. International Journal of Automation and Computing, vol. 9, no. 4, pp. 442–448, 2012. DOI: Scholar
  24. [24]
    D. A. A. G. Singh, S. A. A. Balamurugan, E. J. Leavline. An unsupervised feature selection algorithm with feature ranking for maximizing performance of the classifiers. International Journal of Automation and Computing, vol. 12, no. 5, pp. 511–517, 2015. DOI: Scholar
  25. [25]
    S. J. Dong, S. R. Yin, B. P. Tang, L. L. Chen, T. H. Luo. Bearing degradation process prediction based on the support vector machine and Markov model. Shock and Vibration, vol. 2014, Article number 717465, 2014. DOI: Scholar
  26. [26]
    V. Chandel, A. Sinharay, N. Ahmed, A. Ghose. Exploiting IMU sensors for IOT enabled health monitoring. In Proceedings of the 1st Workshop on IoT-enabled Healthcare and Wellness Technologies and Systems, ACM, Singapore, pp. 21–22, 2016. DOI: Scholar
  27. [27]
    M. Saeed, C. Lieu, G. Raber, R. G. Mark. MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring. In Proceedings of Computers in Cardiology, IEEE, Memphis, USA, pp. 641–644, 2002. DOI: Scholar
  28. [28]
    R. Banerjee, R. Vempada, K. M. Mandana, A. D. Choudhury, A. Pal. Identifying coronary artery disease from photoplethysmogram. In Proceedings of ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, ACM, Heidelberg, Germany, pp. 1084–1088, 2016. DOI: Scholar
  29. [29]
    D. B. Springer, L. Tarassenko, G. D. Clifford. Logistic regression-HSMM-based heart sound segmentation. IEEE Transactions on Biomedical Engineering, vol. 63, no. 4, pp. 822–832, 2016. DOI: Scholar
  30. [30]
    C. Potes, S. Parvaneh, A. Rahman, B. Conroy. Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds. In Proceedings of Computing in Cardiology Conference, IEEE, Vancouver, Canada, pp. 621–624, 2016. DOI: Scholar
  31. [31]
    R. Banerjee, S. Biswas, S. Banerjee, A. D. Choudhury, T. Chattopadhyay, A. Pal, P. Deshpande, K. M. Mandana. Time-frequency analysis of phonocardiogram for classifying heart disease. In Proceedings of Computing in Cardiology Conference, IEEE, Vancouver, Canada, pp. 573–576, 2016. DOI: Scholar
  32. [32]
    R. Rakshit, V. R. Reddy, P. Deshpande. Emotion detection and recognition using HRV features derived from photoplethysmogram signals. In Proceedings of the 2nd workshop on Emotion Representations and Modelling for Companion Systems, ACM, Tokyo, Japan, Article number 2, 2016. DOI: Scholar
  33. [33]
    I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, Cambridge, USA: MIT Press, 2016.zbMATHGoogle Scholar
  34. [34]
    Y. Gal, Z. Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the 33rd International Conference on Machine Learning, JMLR, New York, USA, pp. 1050–1059, 2016.Google Scholar
  35. [35]
    I. Loshchilov, F. Hutter. SGDR: Stochastic gradient descent with Warm restarts. In Proceedings of the 5th International Conference on Learning Representations, ICLR, Toulon, France, vol. 10, pp. 3, 2016.Google Scholar
  36. [36]
    Z. J. Yao, J. Bi, Y. X. Chen. Applying deep learning to individual and community health monitoring data: A survey. International Journal of Automation and Computing, vol. 15, no. 6, pp. 643–655, 2018. DOI: Scholar
  37. [37]
    Y. L. Li, H. R. Li, B. Wang, H. Q. Gu. Rolling element bearing performance degradation assessment using variational mode decomposition and Gath-Geva clustering time series segmentation. International Journal of Rotating Machinery, Article number 2598169, 2017. DOI: Scholar
  38. [38]
    D. Mukherjee, S. Banerjee, P. Misra. Towards efficient stream reasoning. In Proceedings of OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”, Springer, Graz, Austria, pp. 735–738, 2013. DOI: Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.TCS Research & Innovation, Tata Consultancy Services, EcospaceEcospaceKolkataIndia
  2. 2.Computer Vision & Pattern Recognition UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations