Advertisement

Selection of Observation Position and Orientation in Visual Servoing with Eye-in-vehicle Configuration for Manipulator

  • Hong-Xuan Ma
  • Wei ZouEmail author
  • Zheng Zhu
  • Chi Zhang
  • Zhao-Bing Kang
Research Article

Abstract

In this paper, we propose a method to select the observation position in visual servoing with an eye-in-vehicle configuration for the manipulator. In traditional visual servoing, the images taken by the camera may have various problems, including being out of view, large perspective aberrance, improper projection area of object in images and so on. In this paper, we propose a method to determine the observation position to solve these problems. A mobile robot system with pan-tilt camera is designed, which calculates the observation position based on an observation and then moves there. Both simulation and experimental results are provided to validate the effectiveness of the proposed method.

Keywords

Eye-in-vehicle observation position mobile robot visual servoing pan-tilt camera platform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (No. 61773374) and Key Research and Development Program of China (No. 2017YFB1300104).

References

  1. [1]
    X. L. Li, L. C. Wu, T. Y. Lan. A 3D-printed robot hand with three linkage-driven underactuated fingers. International Journal of Automation and Computing, vol. 15, no. 5, pp. 593–602, 2018. DOI:  https://doi.org/10.1007/s11633-018-1125-z.CrossRefGoogle Scholar
  2. [2]
    A. Saxena, H. Pandya, G. Kumar, A. Gaud, K. M. Krishna. Exploring convolutional networks for end-to-end visual servoing. In Proceedings of IEEE International Conference on Robotics and Automation, Singapore, pp. 3817–3823, 2007.Google Scholar
  3. [3]
    S. Kundu, D. R. Parhi. Reactive navigation of underwater mobile robot using ANFIS approach in a manifold manner. International Journal of Automation and Computing, vol. 14, no. 3, pp. 307–320, 2017. DOI:  https://doi.org/10.1007/s11633-016-0983-5.CrossRefGoogle Scholar
  4. [4]
    D. Xu, M. Tan, X. G. Zhao, Z. G. Tu. Seam tracking and visual control for robotic arc welding based on structured light stereovision. International Journal of Automation and Computing, vol. 1, no. 1, pp. 63–75, 2004. DOI:  https://doi.org/10.1007/s11633-004-0063-0.CrossRefGoogle Scholar
  5. [5]
    H. B. Wang, M. Liu. Design of robotic visual servo control based on neural network and genetic algorithm. International Journal of Automation and Computing, vol. 9, no. 1, pp. 24–29, 2012. DOI:  https://doi.org/10.1007/s11633-012-0612-x.MathSciNetCrossRefGoogle Scholar
  6. [6]
    F. Li, H. L. Xie. Sliding mode variable structure control for visual servoing system. International Journal of Automation and Computing, vol. 7, no. 3, pp. 317–323, 2010. DOI:  https://doi.org/10.1007/s11633-010-0509-5.CrossRefGoogle Scholar
  7. [7]
    F. Nagata, K. Watanabe. Adaptive learning with large variability of teaching signals for neural networks and its application to motion control of an industrial robot. International Journal of Automation and Computing, vol. 8, no. 1, pp. 54–61, 2011. DOI:  https://doi.org/10.1007/s11633-010-0554-0.CrossRefGoogle Scholar
  8. [8]
    F. Nagata, K. Watanabe, M. K. Habib. Machining robot with vibrational motion and 3D printer-like data interface. International Journal of Automation and Computing, vol. 15, no. 1, pp. 1–12, 2018. DOI:  https://doi.org/10.1007/s11633-017-1101-z.CrossRefGoogle Scholar
  9. [9]
    H. S. Wang, Y. H. Liu, D. X. Zhou. Adaptive visual servoing using point and line features with an uncalibrated eye-in-hand camera. IEEE Transactions on Robotics, vol. 24, no. 4, pp. 843–857, 2008. DOI:  https://doi.org/10.1109/TRO.2008.2001356.CrossRefGoogle Scholar
  10. [10]
    P. J. S. Gonçalves, L. F. Mendonça, J. M. C. Sousa, and J. R. C. Pinto. Uncalibrated eye-to-hand visual servoing using inverse fuzzy models. IEEE Transactions on Fuzzy Systems, vol. 16, no. 2, pp. 341–353, 2008. DOI:  https://doi.org/10.1109/TFUZZ.2007.896226.CrossRefGoogle Scholar
  11. [11]
    B. Thuilot, P. Martinet, L. Cordesses, J. Gallice. Position based visual servoing: Keeping the object in the field of vision. In Proceedings of IEEE International Conference on Robotics and Automation, Washington, USA, vol. 2, pp. 1624–1629, 2002.Google Scholar
  12. [12]
    G. Chesi, K. Hashimoto, D. Prattichizzo, A. Vicino. Keeping features in the field of view in eye-in-hand visual servoing: A switching approach. IEEE Transactions on Robotics, vol. 20, no. 5, pp. 908–914, 2004. DOI:  https://doi.org/10.1109/TRO.2004.829456.CrossRefGoogle Scholar
  13. [13]
    Y. Mezouar, F. Chaumette. Path planning for robust image-based control. IEEE Transactions on Robotics and Automation, vol. 18, no. 4, pp. 534–549, 2002. DOI:  https://doi.org/10.1109/TRA.2002.802218.CrossRefGoogle Scholar
  14. [14]
    G. Chesi, Y. S. Hung. Global path-planning for constrained and optimal visual servoing. IEEE Transactions on Robotics, vol. 23, no. 5, pp. 1050–1060, 2007. DOI:  https://doi.org/10.1109/TRO.2007.903817.CrossRefGoogle Scholar
  15. [15]
    Z. Zhu, W. Zou, Q. B. Wang, F. Zhang. A velocity compensation visual servo method for oculomotor control of bionic eyes. International Journal of Robotics & Automation, vol. 33, no. 1, pp. 33–44, 2018. DOI:  https://doi.org/10.2316/Journal.206.2018.1.206-4938.CrossRefGoogle Scholar
  16. [16]
    Q. B. Wang, W. Zou, D. Xu, Z. Zhu. Motion control in saccade and smooth pursuit for bionic eye based on three-dimensional coordinates. Journal of Bionic Engineering, vol. 14, no. 2, pp. 336–347, 2017. DOI:  https://doi.org/10.1016/S1672-6529(16)60402-X.CrossRefGoogle Scholar
  17. [17]
    N. V. Tinh, P. T. Cat, P. M. Tuan, T. T. Q. Bui. Visual control of integrated mobile robot-pan tilt-camera system for tracking a moving target. In Proceedings of IEEE International Conference on Robotics and Biomimetics, Bali, Indonesia, pp. 1566–1571, 2014.Google Scholar
  18. [18]
    V. C. Le, T. C. Pham. Optimal tracking a moving target for integrated mobile robot-pan tilt-stereo camera. In Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, Banff, Canada, pp. 530–535, 2016.Google Scholar
  19. [19]
    Y. C. Fang, X. Liu, X. B. Zhang. Adaptive active visual servoing of nonholonomic mobile robots. IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 486–497, 2012. DOI:  https://doi.org/10.1109/TIE.2011.2143380.CrossRefGoogle Scholar
  20. [20]
    R. Sharma, S. Hutchinson. Optimizing hand/eye configuration for visual-servo systems. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Nagoya, Japan, pp. 172–177, 1995.Google Scholar
  21. [21]
    K. Tarabanis, R. Y. Tsai, P. K. Allen. Automated sensor planning for robotic vision tasks. In Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, USA, vol. 1, pp. 76–82, 1991.Google Scholar
  22. [22]
    J. Y. Zheng, Q. Chen, S. Tsuji. Active camera guided manipulation. In Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, USA, vol. 1, pp. 632–638, 1991.Google Scholar
  23. [23]
    D. Xu, M. Tan, Z. M. Jiang, H. S. Hu. Use of colour and shape constraints in vision-based valve operation by robot. International Journal of Advanced Robotic Systems, vol. 3, no. 3, pp. 267–274, 2006. DOI:  https://doi.org/10.5772/5728.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of AutomationChinese Academy of ScienceBeijingChina

Personalised recommendations