Advertisement

Pedestrian Height Estimation and 3D Reconstruction Using Pixel-resolution Mapping Method Without Special Patterns

  • Bing-Xing Wu
  • Suat Utku AyEmail author
  • Ahmed Abdel-Rahim
Research Article

Abstract

Extracting the three-dimensional (3D) information including location and height of a pedestrian is important for vision-based intelligent traffic monitoring systems. This paper tackles the relationship between pixels′ actual size and pixels′ spatial resolution through a new method named pixel-resolution mapping (P-RM). The proposed P-RM method derives the equations for pixels′ spatial resolutions (XY-direction) and object′s height (Z-direction) in the real world, while introducing new tilt angle and mounting height calibration methods that do not require special calibration patterns placed in the real world. Both controlled laboratory and actual world experiments were performed and reported. The tests on 3D mensuration using proposed P-RM method showed overall better than 98.7% accuracy in laboratory environments and better than 96% accuracy in real world pedestrian height estimations. The 3D reconstructed images for measured points were also determined with the proposed P-RM method which shows that the proposed method provides a general algorithm for 3D information extraction.

Keywords

Traffic monitoring application spatial resolution pixel-resolution mapping (P-RM) method 3D information pedestrian height estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Setchell, E. L. Dagless. Vision-based road-traffic monitoring sensor. IEE Proceedings – Vision, Image and Signal Processing, vol. 148, no. 1, pp. 78–84, 2001. DOI: 10.1049/ ip-vis:20010077.CrossRefGoogle Scholar
  2. [2]
    C. C. C. Pang, S. S. Xie, S. C. Wong, K. Choi. Generalized camera calibration model for trapezoidal patterns on the road. Optical Engineering, vol. 52, no. 1, Article number 017006, 2013. DOI: 10.1117/1.OE.52.1.017006.Google Scholar
  3. [3]
    A. Criminisi, I. Reid, A. Zisserman. Single view metrology. International Journal of Computer Vision, vol. 40, no. 2, pp. 123–148, 2000. DOI: 10.1023/A:1026598000963.CrossRefzbMATHGoogle Scholar
  4. [4]
    Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000. DOI: 10. 1109/34.888718.CrossRefGoogle Scholar
  5. [5]
    P. K. Sinha. Image Acquisition and Preprocessing for Machine Vision Systems, Bellingham, USA: Society of PhotoOptical Instrumentation Engineers, 2012.CrossRefGoogle Scholar
  6. [6]
    L. Lee, R. Romano, G. Stein. Monitoring activities from multiple video streams: establishing a common coordinate frame. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 758–767, 2000. DOI: 10.1109/34.868678. DOI: 10.1109/34.868678.CrossRefGoogle Scholar
  7. [7]
    S. Khan, M. Shah. Consistent labeling of tracked objects in multiple cameras with overlapping fields of view. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1355–1360, 2003. DOI: 10.1109/ TPAMI.2003.1233912.CrossRefGoogle Scholar
  8. [8]
    G. S. K. Fung, N. H. C. Yung, G. K. H. Pang. Camera calibration from road lane markings. Optical Engineering, vol. 42, no. 10, pp. 2967–2977, 2003. DOI: 10.1117/1. 1606458.CrossRefGoogle Scholar
  9. [9]
    J. Shao, S. K. Zhou, R. Chellappa. Robust height estimation of moving objects from uncalibrated videos. IEEE Transactions on Image Processing, vol. 19, no. 8, pp. 2221–2232, 2010. DOI: 10.1109/TIP.2010.2046368.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. C. Liu, R. T. Collins, Y. X. Liu. Surveillance camera autocalibration based on pedestrian height distributions. In Proceedings of the British Machine Vision Conference, Dundee, UK, 2011.Google Scholar
  11. [11]
    S. W. Park, T. E. Kim, J. S. Choi. Real-time estimation of trajectories and heights of pedestrians. In Proceedings of International Conference on Information Science and Applications, IEEE, Jeju Island, South Korea, 2011. DOI: 10.1109/ICISA.2011.5772407.Google Scholar
  12. [12]
    D. Xu, H. W. Wang, Y. F. Li, M. Tan. A new calibration method for an inertial and visual sensing system. International Journal of Automation and Computing, vol. 9, no. 3, pp. 299–305, 2012. DOI: 10.1007/s11633-012-0648-y.CrossRefGoogle Scholar
  13. [13]
    H. J. Song, Y. Z. Chen, Y. Y. Gao. Velocity calculation by automatic camera calibration based on homogenous fog weather condition. International Journal of Automation and Computing, vol. 10, no. 2, pp. 143–156, 2013. DOI: 10.1007/s11633-013-0707-z.CrossRefGoogle Scholar
  14. [14]
    F. A. Andaló, G. Taubin, S. Goldenstein. Efficient height measurements in single images based on the detection of vanishing points. Computer Vision and Image Understanding, vol. 138, no. 2, pp. 51–60, 2015. DOI: 10.1016/j.cviu. 2015.03.017.CrossRefGoogle Scholar
  15. [15]
    J. Jung, H. Kim, I. Yoon, J. Paik. Human height analysis using multiple uncalibrated cameras. In Proceedings of IEEE International Conference on Consumer Electronics, IEEE, Las Vegas, USA, pp. 213–214, 2016. DOI: 10. 1109/ICCE.2016.7430585.Google Scholar
  16. [16]
    J. Jung, I. Yoon, S. Lee, J. Paik. Object detection and tracking-based camera calibration for normalized human height estimation. Journal of Sensors, vol. 2016, Article number 8347841, 2016. DOI: 10.1155/2016/8347841.Google Scholar
  17. [17]
    L. Y. Xu, Z. Q. Cao, P. Zhao, C. Zhou. A new monocular vision measurement method to estimate 3D positions of objects on floor. International Journal of Automation and Computing, vol. 14, no. 2, pp. 159–168, 2017. DOI: 10.1007/ s11633-016-1047-6.CrossRefGoogle Scholar
  18. [18]
    J. W. Li, W. Gao, Y. H. Wu. Elaborate scene reconstruction with a consumer depth camera. International Journal of Automation and Computing, vol. 15, no. 4, pp. 443–453, 2018. DOI: 10.1007/s11633-018-1114-2.CrossRefGoogle Scholar
  19. [19]
    B. X. Wu, S. U. Ay, A. Abdel-Rahim. Trapezoid pixel array complementary metal oxide semiconductor image sensor with simplified mapping method for traffic monitoring applications. Optical Engineering, vol. 57, no. 9, Article number 093106, 2018. DOI: 10.1117/1.OE.57.9.093106.Google Scholar
  20. [20]
    B. X. Wu, A. Abdel-Rahim, S. U. Ay. A trapezoid CMOS image sensor with 2% detection accuracy for traffic monitoring. In Proceedings of the 60th International Midwest Symposium on Circuits and Systems, IEEE, Boston, USA, pp. 1154–1158, 2017. DOI: 10.1109/MWSCAS.2017. 8053133.Google Scholar
  21. [21]
    F. Rameau, A. Habed, C. Demonceaux, D. Sidibé, D. Fofi. Self-calibration of a PTZ camera using new LMI constraints. In Proceedings of the 11th Asian Conference on Computer Vision, Springer, Daejeon, Korea, pp. 297–308, 2012. DOI: 10.1007/978-3-642-37447-0_23.Google Scholar
  22. [22]
    Y. T. Li, J. Zhang, W. W. Hu, J. W. Tian. Method for pantilt camera calibration using single control point. Journal of the Optical Society of America A, vol. 32, no. 1, pp. 156–163, 2015. DOI: 10.1364/JOSAA.32.000156.CrossRefGoogle Scholar
  23. [23]
    J. Nakamura. Image Sensors and Signal Processing for Digital Still Cameras, Boca Raton, USA: Taylor & Francis Group, 2006.Google Scholar
  24. [24]
    L. A. Klein, M. K. Mills, D. R. P. Gibson. Traffic Detector Handbook, Volume II, 3rd ed, FHWA-HRT-06-139, USDOT, Washington, USA, 2006.Google Scholar
  25. [25]
    A. Elgammal, R. Duraiswami, D. Harwood, L. S. Davis. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE, vol. 90, no. 7, pp. 1151–1163, 2002. DOI: 10.1109/JPROC.2002.801448.CrossRefGoogle Scholar
  26. [26]
    N. Kanopoulos, N. Vasanthavada, R. L. Baker. Design of an image edge detection filter using the Sobel operator. IEEE Journal of Solid-state Circuits, vol. 23, no. 2, pp. 358–367, 1988. DOI: 10.1109/4.996.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Gmbh Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of IdahoMoscowUSA
  2. 2.Department of Civil EngineeringUniversity of IdahoMoscowUSA

Personalised recommendations