Advertisement

Optimization RFID-enabled Retail Store Management with Complex Event Processing

  • Shang-Lian PengEmail author
  • Ci-Jian Liu
  • Jia He
  • Hong-Nian Yu
  • Fan Li
Research Article

Abstract

Radio frequency identification (RFID) enabled retail store management needs workflow optimization to facilitate real-time decision making. In this paper, complex event processing (CEP) based RFID-enabled retail store management is studied, particularly focusing on automated shelf replenishment decisions. We define different types of event queries to describe retailer store workflow action over the RFID data streams on multiple tagging levels (e.g., item level and container level). Non-deterministic finite automata (NFA) based evaluation models are used to detect event patterns. To manage pattern match results in the process of event detection, optimization algorithm is applied in the event model to share event detection results. A simulated RFID-enabled retail store is used to verify the effectiveness of the method, experiment results show that the algorithm is effective and could optimize retail store management workflow.

Keywords

Complex event processing (CEP) radio frequency identification (RFID) Internet of things data stream supply chain retail store 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was supported by National Social Science Fund (No. 16CTQ013), the Application Fundamental Research Foundation of Sichuan Province, China (No. 2017JY0011), and the Key Project of Sichuan Provincial Department of Education, China (No. 2017GZ0333).

References

  1. [1]
    D. Corsten, T. Gruen. Desperately seeking shelf availability: An examination of the extent, the causes, and the efforts to address retail out-of-stocks. International Journal of Retail & Distribution Management, vol. 31, no. 12, pp. 605–617, 2003. DOI: 10.1108/09590550310507731.CrossRefGoogle Scholar
  2. [2]
    K. Pramatari, P. Miliotis. The impact of collaborative store ordering on shelf availability. Supply Chain Management: An International Journal, vol. 13, no. 1, pp. 49–61, 2008. DOI: 10.1108/13598540810850319.CrossRefGoogle Scholar
  3. [3]
    K. Pramatari. Collaborative supply chain practices and evolving technological approaches. Supply Chain Management: An International Journal, vol. 12, no. 3, pp. 210–220, 2007. DOI: 10.1108/13598540710742527.CrossRefGoogle Scholar
  4. [4]
    T. J. Fan, F. Tao, S. Deng, S. X. Li. Impact of RFID technology on supply chain decisions with inventory inaccuracies. International Journal of Production Economics, vol. 159, pp. 117–125, 2015. DOI: 10.1016/j.ijpe.2014.10. 004.CrossRefGoogle Scholar
  5. [5]
    S. Shin, B. Eksioglu. An empirical study of RFID productivity in the U.S. retail supply chain. International Journal of Production Economics, vol. 163, pp. 89–96, 2015. DOI: 10.1016/j.ijpe.2015.02.016.CrossRefGoogle Scholar
  6. [6]
    J. Liu, B. Xiao, K. Bu, L. J. Chen. Efficient distributed query processing in large RFID-enabled supply chains. In Proceedings IEEE Conference on Computer Communications, Toronto, Canada, pp. 163–171, 2014. DOI: 10.1109/INFOCOM.2014.6847936.Google Scholar
  7. [7]
    S. Y. Qi, Y. Q. Zheng, M. Li, Y. H. Liu, J. L. Qiu. Scalable industry data access control in RFID-enabled supply chain. IEEE/ACM Transactions on Networking, vol. 24, no. 6, pp. 3551–3564, 2016. DOI: 10.1109/TNET.2016. 2536626.CrossRefGoogle Scholar
  8. [8]
    H. P. Zhang, Y. L. Diao, N. Immerman. On complexity and optimization of expensive queries in complex event processing. In Proceedings of ACM SIGMOD International Conference on Management of Data, A Utah, Snowbird, USA, pp. 217–228, 2014. DOI: 10.1145/2588555.2593671.Google Scholar
  9. [9]
    F. Thiesse, T. Buckel. A comparison of RFID-based shelf replenishment policies in retail stores under suboptimal read rates. International Journal of Production Economics, vol. 159, pp. 126–136, 2015. DOI: 10.1016/j.ijpe.2014.09.002.CrossRefGoogle Scholar
  10. [10]
    I. P. Vlachos. A hierarchical model of the impact of RFID practices on retail supply chain performance. Expert Systems with Applications, vol. 41, no. 1, pp. 5–15, 2014. DOI: 10.1016/j.eswa.2013.07.006.CrossRefGoogle Scholar
  11. [11]
    J. Fernie, L. Sparks. Logistics and Retail Management: Emerging Issues and New Challenges in the Retail Supply Chain, London, UK: Kogan Page, 2014.Google Scholar
  12. [12]
    T. J. Fan, X. Y. Chang, C. H. Gu, J. J. Yi, S. Deng. Benefits of RFID technology for reducing inventory shrinkage. International Journal of Production Economics, vol. 147, pp. 659–665, 2014. DOI: 10.1016/j.ijpe.2013.05.007.CrossRefGoogle Scholar
  13. [13]
    S. Chakravarthy, V. Krishnaprasad, E. Anwar, S. K. Kim. Composite events for active databases: Semantics, contexts and detection. In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, pp. 606–617, 1994.Google Scholar
  14. [14]
    S. Gatziu, K. R. Dittrich. Events in an active object-oriented database system. In Proceedings of the 1st International Workshop on Rules in Database Systems, Edinburgh, UK, pp. 23–39, 1994. DOI: 10.1007/978-1-4471-3225-7_2.CrossRefGoogle Scholar
  15. [15]
    N. H. Gehani, H. V. Jagadish, O. Shmueli. Composite event specification in active databases: Model & implementation. In Proceedings of the 18th International Conference on Very Large Data Bases, San Francisco, USA, pp. 327–338, 1992.Google Scholar
  16. [16]
    R. Meo, G. Psaila, S. Ceri. Composite events in Chimera. In Proceedings of the 5th International Conference on Extending Database Technology, Avignon, France, pp. 56–76, 1996. DOI: 10.1007/BFb0014143.Google Scholar
  17. [17]
    D. Zimmer, R. Unland. On the semantics of complex events in active database management systems. In Proceedings of the 15th International Conference on Data Engineering, IEEE, Sydney, Australia, pp. 392–399, 1999. DOI: 10.1109/ICDE.1999.754955.Google Scholar
  18. [18]
    R. E. Gruber, B. Krishnamurthy, E. Panagos. CORBA Notification Service: Design challenges and scalable solutions. In Proceedings of the 17th International Conference on Data Engineering, IEEE, Heidelberg, Germany, pp. 13–20, 2001. DOI: 10.1109/ICDE.2001.914809.CrossRefGoogle Scholar
  19. [19]
    E. Wu, Y. L. Diao, S. Rizvi. High-performance complex event processing over streams. In Proceedings of ACM SIGMOD International Conference on Management of Data, Chicago, USA, pp. 407–418, 2006. DOI: 10.1145/1142473.1142520.Google Scholar
  20. [20]
    Q. Chen, Z. H. Li, H. L. Liu. Optimizing complex event processing over RFID data streams. In Proceedings of the 24th IEEE International Conference on Data Engineering, Cancun, Mexico, pp. 1442–1444, 2008. DOI: 10.1109/ICDE.2008.4497583.Google Scholar
  21. [21]
    J. Agrawal, Y. L. Diao, D. Gyllstrom, N. Immerman. Efficient pattern matching over event streams. In Proceedings of ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, pp. 147–160, 2008. DOI: 10.1145/1376616.1376634.Google Scholar
  22. [22]
    H. P. Zhang, Y. L. Diao, N. Immerman. Recognizing patterns in streams with imprecise timestamps. Information Systems, vol. 38, no. 8, pp. 1187–1211, 2013. DOI: 10. 1016/j.is.2012.01.002.CrossRefGoogle Scholar
  23. [23]
    H. Zhang, Y. Diao, N. Immerman. Recognizing patterns in streams with imprecise timestamps. Information Systems, vol. 38, no. 8, pp. 1187–1211, 2013. DOI: 10.1016/j.is.2012. 01.002.CrossRefGoogle Scholar
  24. [24]
    O. Cooper, A. Edakkunni, M. J. Franklin, W. Hong, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, E. Wu. HiFi: A unified architecture for high fan-in systems. In Proceedings of the 30th International Conference on Very Large Data Bases, ACM, Toronto, Canada, pp. 1357–1360, 2004.Google Scholar
  25. [25]
    F. S. Wang, P. Y. Liu. Temporal management of RFID data. In Proceedings of the 31st International Conference on Very Large Data Bases, ACM, Trondheim, Norway, pp. 1128–1139, 2005.Google Scholar
  26. [26]
    M. Ray, E. A. Rundensteiner, M. Liu, C. Gupta, S. Wang, I. Ari. High-performance complex event processing using continuous sliding views. In Proceedings of the 16th International Conference on Extending Database Technology, ACM, Genoa, Italy, pp. 525–536, 2013. DOI: 10.1145/2452376.2452437.Google Scholar
  27. [27]
    Y. M. Qi, L. Cao, M. Ray, E. A. Rundensteiner. Complex event analytics: Online aggregation of stream sequence patterns. In Proceedings of ACM SIGMOD International Conference on Management of Data, Snowbird, USA, pp. 229–240, 2014. DOI: 10.1145/2588555.2593684.Google Scholar
  28. [28]
    W. A. Higashino, M. A. M. Capretz, L. F. Bittencourt. CEPSim: Modelling and simulation of complex event processing systems in cloud environments. Future Generation Computer Systems, vol. 65, pp. 122–139, 2016. DOI: 10. 1016/j.future.2015.10.023.CrossRefGoogle Scholar
  29. [29]
    N. Dziengel, M. Seiffert, M. Ziegert, S. Adler, S. Pfeiffer, J. Schiller. Deployment and evaluation of a fully applicable distributed event detection system in wireless sensor networks. Ad Hoc Networks, vol. 37, pp. 160–182, 2016. DOI: 10.1016/j.adhoc.2015.08.017.CrossRefGoogle Scholar
  30. [30]
    Y. H. Wang, K. Cao, X. M. Zhang. Complex event processing over distributed probabilistic event streams. Computers & Mathematics with Applications, vol. 66, no. 10, pp. 1808–1821, 2013. DOI: 10.1016/j.camwa.2013.06.032.CrossRefzbMATHGoogle Scholar
  31. [31]
    S. Jayasekara, S. Kannangara, T. Dahanayakage, I. Ranawaka, S. Perera, V. Nanayakkara. Wihidum: Distributed complex event processing. Journal of Parallel and Distributed Computing, vol. 79–80, pp. 42–51, 2015. DOI: 10.1016/j.jpdc.2015.03.002.Google Scholar
  32. [32]
    N. Giatrakos, A. Artikis, A. Deligiannakis, M. Garofalakis. Complex event recognition in the big data era. Proceedings of the VLDB Endowment, vol. 10, no. 12, pp. 1996–1999, 2017. DOI: 10.14778/3137765.3137829.CrossRefGoogle Scholar
  33. [33]
    M. Dayarathna, S. Perera. Recent advancements in event processing. ACM Computing Surveys (CSUR), vol. 51, no. 2, pp. 1–36, 2018. DOI: 10.1145/3170432.CrossRefGoogle Scholar
  34. [34]
    S. Hagedorn, T. Räth. Efficient spatio-temporal event processing with STARK. In Proceedings of the 20th International Conference on Extending Database Technology, OpenProceedings.org, Venice, Italy, pp. 570–573, 2017.Google Scholar
  35. [35]
    L. Zou, Z. D. Wang, D. H. Zhou. Event-based control and filtering of networked systems: A survey. International Journal of Automation and Computing, vol. 14, no. 3, pp. 239–253, 2017. DOI: 10.1007/s11633-017-1077-8.CrossRefGoogle Scholar
  36. [36]
    H. Gonzalez, J. W. Han, X. L. Li, D. Klabjan. Warehousing and analyzing massive RFID data sets. In Proceedings of the 22nd International Conference on Data Engineering, IEEE, Atlanta, USA, 2006. DOI: 10.1109/ICDE. 2006.171.Google Scholar
  37. [37]
    H. Gonzalez, J. W. Han, X. L. Li. Flowcube: Constructing RFID flowcubes for multi-dimensional analysis of commodity flows. In Proceedings of the 32nd International Conference on Very Large Data Bases, ACM, Seoul, Korea, pp. 834–845, 2006.Google Scholar
  38. [38]
    C. H. Lee, C. W. Chung. Efficient storage scheme and query processing for supply chain management using RFID. In Proceedings of ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, pp. 291–302, 2008. DOI: 10.1145/1376616.1376648.Google Scholar
  39. [39]
    D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, S. Zdonik. Monitoring streams: A new class of data management applications. In Proceedings of the 28th International Conference on Very Large Data Bases, Hong Kong, China, pp. 215–226, 2002.CrossRefGoogle Scholar
  40. [40]
    J. J. Chen, D. J. DeWitt, F. Tian, Y. Wang. NiagaraCQ: A scalable continuous query system for internet databases. In Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, USA, pp. 379–390, 2000. DOI: 10.1145/342009.335432.Google Scholar
  41. [41]
    S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, M. A. Shah. TelegraphCQ: Continuous dataflow processing. In Proceedings of ACM SIG-MOD International Conference on Management of Data, San Diego, USA, pp. 668, 2003. DOI: 10.1145/872757.872857.Google Scholar
  42. [42]
    L. Cao, E. A. Rundensteiner. High performance stream query processing with correlation-aware partitioning. Proceedings of the VLDB Endowment, vol. 7, no. 4, pp. 265–276, 2013. DOI: 10.14778/2732240.2732245.CrossRefGoogle Scholar
  43. [43]
    U. Srivastava, J. Widom. Memory-limited execution of windowed stream joins. In Proceedings of the 30th International Conference on Very Large Data Bases, ACM, Toronto, Canada, pp. 324–335, 2004.Google Scholar
  44. [44]
    Y. C. Tu, S. Liu, S. Prabhakar, B. Yao. Load shedding in stream databases: A control-based approach. In Proceedings of the 32nd International Conference on Very Large Data Bases, ACM, Seoul, Korea, pp. 787–798, 2006.Google Scholar
  45. [45]
    N. Alon, P. B. Gibbons, Y. Matias, M. Szegedy. Tracking join and self-join sizes in limited storage. In Proceedings of the 18th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, ACM, Philadelphia, Pennsylvania, USA, pp. 10–20, 1999. DOI: 10.1145/303976. 303978.Google Scholar
  46. [46]
    J. Wu, K. L. Tan, Y. L. Zhou. Window-oblivious join: A data-driven memory management scheme for stream join. In Proceedings of the 19th International Conference on Scientific and Statistical Database Management, IEEE, Banff, Canada, pp. 21, 2007. DOI: 10.1109/SSDBM. 2007.43.Google Scholar
  47. [47]
    P. Seshadri, M. Livny, R. Ramakrishnan. The design and implementation of a sequence database system. In Proceedings of the 22th International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc., San Francisco, USA, pp. 99–110, 1996.Google Scholar
  48. [48]
    R. Sadri, C. Zaniolo, A. Zarkesh, J. Adibi. Expressing and optimizing sequence queries in database systems. ACM Transactions on Database Systems, vol. 29, no. 2, pp. 282–318, 2004. DOI: 10.1145/1005566.1005568.CrossRefGoogle Scholar
  49. [49]
    A. Lerner, D. Shasha. AQuery: Query language for ordered data, optimization techniques, and experiments. In Proceedings of the 29th International Conference on Very Large Data Bases, ACM, Berlin, Germany, pp. 345–356, 2003.Google Scholar
  50. [50]
    H. K. H. Chow, K. L. Choy, W. B. Lee. A dynamic logistics process knowledge-based system–An RFID multi-agent approach. Knowledge-based Systems, vol. 20, no. 4, pp. 357–372, 2007. DOI: 10.1016/j.knosys.2006.08.004.CrossRefGoogle Scholar
  51. [51]
    X. D. Zhu, Z. Q. Huang. Conceptual modeling rules extracting for data streams. Knowledge-based Systems, vol. 21, no. 8, pp. 934–940, 2008. DOI: 10.1016/j.knosys. 2008.04.003.CrossRefGoogle Scholar
  52. [52]
    S. H. Choi, Y. X. Yang, B. Yang, H. H. Cheung. Item-level RFID for enhancement of customer shopping experience in apparel retail. Computers in Industry, vol. 71, pp. 10–23, 2005. DOI: 10.1016/j.compind.2015.03.003.CrossRefGoogle Scholar
  53. [53]
    C. Condea, F. Thiesse, E. Fleisch. RFID-enabled shelf replenishment with backroom monitoring in retail stores. Decision Support Systems, vol. 52, no. 4, pp. 839–849, 2012. DOI: 10.1016/j.dss.2011.11.018.CrossRefGoogle Scholar
  54. [54]
    C. Metzger, F. Thiesse, S. Gershwin, E. Fleisch. The impact of false-negative reads on the performance of RFID-based shelf inventory control policies. Computers & Operations Research, vol. 40, no. 7, pp. 1864–1873, 2013. DOI: 10.1016/j.cor.2013.02.001.MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    H. Sorensen, S. Bogomolova, K. Anderson, G. Trinh, A. Sharp, R. Kennedy, B. Page, M. Wright. Fundamental patterns of in-store shopper behavior. Journal of Retailing and Consumer Services, vol. 37, pp. 182–194, 2017. DOI: 10.1016/j.jretconser.2017.02.003.CrossRefGoogle Scholar
  56. [56]
    Y. He, X. D. Liang, F. M. Deng, Z. Li. Emergency supply chain management based on rough set–house of quality. International Journal of Automation and Computing, published online. DOI: 10.1007/s11633-018-1133-z.Google Scholar
  57. [57]
    A. T. Yang, L. D. Zhao. Supply chain network equilibrium with revenue sharing contract under demand disruptions. International Journal of Automation and Computing, vol. 8, no. 2, pp. 177–184, 2011. DOI: 10.1007/s11633-011-0571-7.CrossRefGoogle Scholar
  58. [58]
    H. F. Deng, W. Deng, H. Li, H. J. Yang. Authentication and access control in RFID based logistics-customs clearance service platform. International Journal of Automation and Computing, vol. 7, no. 2, pp. 180–189, 2010. DOI: 10.1007/s11633-010-0180-x.CrossRefGoogle Scholar
  59. [59]
    S. L. Peng, J. He, H. N. Yu, S. Cang. Complex event processing for RFID-enabled retail store. In Proceedings of the 23rd International Conference on Automation and Computing, IEEE, Huddersfield, UK, 2017. DOI: 10.23919/IConAC.2017.8081977.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyChengdu University of Information TechnologyChengduChina
  2. 2.The Southwest Jiaotong University (SWJTU)-Leeds Joint SchoolSouthwest Jiaotong UniversityChengduChina
  3. 3.School of Computer Science and Network SecurityDongguan University of TechnologyDongguanChina
  4. 4.Faculty of Science and TechnologyBournemouth UniversityPooleUK

Personalised recommendations