Advertisement

Modeling of a Smart Nano Force Sensor Using Finite Elements and Neural Networks

  • Farid Menacer
  • Abdelmalek Kadr
  • Zohir Dibi
Research Article

Abstract

The aim of this work is to model and analyze the behavior of a new smart nano force sensor. To do so, the carbon nanotube has been used as a suspended gate of a metal-oxide-semiconductor field-effect transistor (MOSFET). The variation of the applied force on the carbon nanotube (CNT) generates a variation of the capacity of the transistor oxide-gate and therefore the variation of the threshold voltage, which allows the MOSFET to become a capacitive nano force sensor. The sensitivity of the nano force sensor can reach 0.124 31 V/nN. This sensitivity is greater than results in the literature. We have found through this study that the response of the sensor depends strongly on the geometric and physical parameters of the CNT. From the results obtained in this study, it can be seen that the increase in the applied force increases the value of the MOSFET threshold voltage VTh. In this paper, we first used artificial neural networks to faithfully reproduce the response of the nano force sensor model. This neural model is called direct model. Then, secondly, we designed an inverse model called an intelligent sensor which allows linearization of the response of our developed force sensor.

Keywords

Nano force sensor carbon nanotube (CNT) finite elements neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors would like to thank the Mechanical Engineering Laboratory of the University of Biskra, Algeria, for their important help and support in developing the numerical models using ANSYS simulator.

References

  1. [1]
    P. Rougeot, S. Régnier, N. Chaillet. Forces analysis for micro–manipulation. In Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland, pp. 105–110, 2005. DOI: 10.1109/CIRA.2005.1554262.Google Scholar
  2. [2]
    N. Kato, I. Suzuki, H. Kikuta, K. Iwata. Force–balancing microforce sensor with an optical–fiber interferometer. Review of Scientific Instruments, vol. 68, no. 6, pp. 2475–2478, 1997. DOI: 10.1063/1.1148171.CrossRefGoogle Scholar
  3. [3]
    M. Kalantari, J. Dargahi, J. Kövecses, M. G. Mardasi, S. Nouri. A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites. IEEE/ASME Transactions on Mechatronics, vol. 17, no. 3, pp. 572–581, 2012. DOI: 10.1109/TMECH.2011.2108664.CrossRefGoogle Scholar
  4. [4]
    A. S. Krajewski, K. Magniez, R. J. N. Helmer, V. Schrank. Piezoelectric force response of novel 2D textile based PVDF sensors. IEEE Sensors Journal, vol. 13, no. 12, pp. 4743–4748, 2013. DOI: 10.1109/JSEN.2013.2274151.CrossRefGoogle Scholar
  5. [5]
    K. F. Lei, K. F. Lee, M. Y. Lee. A flexible PDMS capacitive tactile sensor with adjustable measurement range for plantar pressure measurement. Microsystem Technologies, vol. 20, no. 7, pp. 1351–1358, 2014. DOI: 10.1007/s00542–013–1918–5.CrossRefGoogle Scholar
  6. [6]
    E. Peiner, L. Doering. Force calibration of stylus instruments using silicon microcantilevers. Sensors and Actuators A, vol. 123–124, pp. 137–145, 2005. DOI: 10.1016/j.sna. 2005.02.031.Google Scholar
  7. [7]
    R. Pérez, N. Chaillet, K. Domanski, P. Janus, P. Grabiec. Fabrication, modeling and integration of a silicon technology force sensor in a piezoelectric micro–manipulator. Sensors and Actuators A, vol. 128, no. 2, pp. 367–375, 2006. DOI: 10.1016/j.sna.2006.01.042.CrossRefGoogle Scholar
  8. [8]
    T. L. Li, L. Q. Li, G. Y. Zhang. A nano–scaled force sensor based on a photonic crystal nanocavity resonator and a microcantilever. ECS Journal of Solid State Science and Technology, vol. 3, no. 7, pp. Q146–Q151, 2014. DOI: 10. 1149/2.0151407jss.Google Scholar
  9. [9]
    L. Q. Li, T. L. Li, F. T. Ji, W. P. Song, G. Y. Zhang, Y. Li. The effects of optical and material properties on designing of a photonic crystal mechanical sensor. Microsystem Technologies, vol. 23, no. 8, pp. 3271–3280, 2017. DOI: 10.1007/s00542–016–3186–7.CrossRefGoogle Scholar
  10. [10]
    S. Iijima. Helical microtubules of graphitic carbon. Nature, vol. 354, no. 6348, pp. 56–58, 1991. DOI: 10.1038/354056a0.CrossRefGoogle Scholar
  11. [11]
    A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S. W. Joo. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Research Letters, vol. 9, no. 1, pp. 393, 2014. DOI: 10.1186/1556–276X–9–393.CrossRefGoogle Scholar
  12. [12]
    O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, T. N. Dinh, A. Al–Hamry, L. Bu, C. Gerlach, A. Bouhamed. Flexible carbon nanotube films for high performance strain sensors. Sensor, vol. 14, no. 6, pp. 10042–10071, 2014. DOI: 10.3390/s140610042.CrossRefGoogle Scholar
  13. [13]
    Y. G. Li, R. Ahuja, J. A. Larsson. Communication: Origin of the difference between carbon nanotube armchair and zigzag ends. The Journal of Chemical Physics, vol. 140, no. 9, Article number 091102, 2014. DOI: 10.1063/1.4867744.Google Scholar
  14. [14]
    L. Marty, A. Iaia, M. Faucher, V. Bouchiat, C. Naud, M. Chaumont, T. Fournier, A. M. Bonnot. Self–assembled single wall carbon nanotube field effect transistors and AFM tips prepared by hot filament assisted CVD. Thin Solid Films, vol. 501, no. 1–2, pp. 299–302, 2006. DOI: 10.1016/j.tsf.2005.07.218.Google Scholar
  15. [15]
    C. H. Ke, H. D. Espinosa. Feedback controlled nanocantilever device. Applied Physics Letter, vol. 85, no. 4, pp. 681–683, 2004. DOI: 10.1063/1.1767606.CrossRefGoogle Scholar
  16. [16]
    D. Mtsuko, A. Koshio, M. Yudasaka, S. Iijima, M. Ahlskog. Measurements of the transport gap in semiconducting multiwalled carbon nanotubes with varying diameter and length. Physical Review B, vol. 91, no. 19, Article number 195426, 2015. DOI: 10.1103/PhysRevB.91.195426.Google Scholar
  17. [17]
    X. L. Tang, A. El Hami, K. El–Hami. Mechanical properties investigation of single–walled carbon nanotube using finite element method. Key Engineering Materials, vol. 550, pp. 179–187, 2013. DOI: 10.4028/www.scientific. net/KEM.550.179.CrossRefGoogle Scholar
  18. [18]
    C. Mungra, J. F. Webb. Free vibration analysis of single–walled carbon nanotubes based on the continuum finite element method. Global Journal of Technology & Optimization, vol. 6, no. 2, Article number 1000173, 2015. Doi: 10.4172/2229–8711.1000173.Google Scholar
  19. [19]
    C. Y. Li, T. W. Chou. A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures, vol. 40, no. 10, pp. 2487–2499, 2003. DOI: 10.1016/S0020–7683(03)00056–8.Google Scholar
  20. [20]
    D. H. Wu, W. T. Chien, C. S. Chen, H. H. Chen. Resonant frequency analysis of fixed–free single–walled carbon nanotube–based mass sensor. Sensors and Actuators A, vol. 126, no. 1, pp. 117–121, 2006. Doi: 10.1016/j.sna.2005. 10.005.CrossRefGoogle Scholar
  21. [21]
    S. Prabhu, S. Bhaumik, B. K. Vinayagam. Finite element modeling and analysis of zigzag and armchair type single wall carbon nanotube. Journal of Mechanical Engineering Research, vol. 4, no. 8, pp. 260–266, 2012. DOI: 10.5897/JMER12.025.Google Scholar
  22. [22]
    I. H. Song, P. K. Ajmera. A laterally movable gate field effect transistor. Journal of Microelectromechanical Systems, vol. 18, no. 1, pp. 208–216, 2009. Doi: 10.1109/JMEMS.2008.2008623.Google Scholar
  23. [23]
    F. Djeffal, Z. Dibi, M. L. Hafiane, D. Arar. Design and simulation of a nanoelectronic DG MOSFET current source using artificial neural networks. Materials Sciences and Engineering: C, vol. 27, no. 5–8, pp. 1111–1116, 2007. Doi: 10.1016/j.msec.2006.09.005.Google Scholar
  24. [24]
    F. Djeffal, S. Guessasma, A. Benhaya, M. Chahdi. An analytical approach based on neural computation to estimate the lifetime of deep submicron MOSFETs. Semiconductor Science and Technology, vol. 20, no. 2, pp. 158–164, 2005. DOI: 10.1088/0268–1242/20/2/010.CrossRefGoogle Scholar
  25. [25]
    F. Menacer, A. Kadri, F. Djeffal, Z. Dibi, H. Ferhati. Modeling of boron nitride–based nanotube biological sensor using neural networks. Proceedings of the 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, Sousse, Tunisia, 2016. DOI: 10.1109/STA.2016.7951987.CrossRefGoogle Scholar
  26. [26]
    F. Menacer, A. Kadri, F. Djeffal, Z. Dibi. Modeling and investigation of smart capacitive pressure sensor using artificial neural networks. Proceedings of the 6th International Conference on Systems and Control, Batna, Algeria, 2017. DOI: 10.1109/ICoSC.2017.7958746.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Electronics Laboratory, Department of ElectronicsUniversity of BatnaBatnaAlgeria

Personalised recommendations