Advertisement

An Energy-based Nonlinear Coupling Control for Offshore Ship-mounted Cranes

  • Yu-Zhe Qian
  • Yong-Chun Fang
  • Tong Yang
Research Article

Abstract

This paper proposes a novel nonlinear energy-based coupling control for an underactuated offshore ship-mounted crane, which guarantees both precise trolley positioning and payload swing suppressing performances under external sea wave disturbance. In addition to having such typical nonlinear underactuated property, as it is well known, an offshore ship-mounted crane also suffers from much unexpected persistent disturbances induced by sea waves or currents, which, essentially different from an overhead crane fixed on land, cause much difficulty in modeling and controller design. Inspired by the desire to achieve appropriate control performance against those challenging factors, in this paper, through carefully analyzing the inherent mechanism of the nonlinear dynamics, we first construct a new composite signal to enhance the coupling behavior of the trolley motion as well as the payload swing in the presence of ship′s roll motion disturbance. Based on which, an energy-based coupling control law is presented to achieve asymptotic stability of the crane control system′s equilibrium point. Without any linearization of the complex nonlinear dynamics, unlike traditional feedback controllers, the proposed control law takes a much simpler structure independent of the system parameters. To support the theoretical derivations and to further verify the actual control performance, Lyapunov-based mathematical analysis as well as numerical simulation/experimental results are carried out, which clarify the feasibility and superior performance of the proposed method over complicated disturbances.

Keywords

Energy-based control offshore ship-mounted cranes Lyapunov methods underactuated nonlinear control systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11372144), National Science Fund for Distinguished Young Scholars of China (No. 61325017), and National Science Foundation of Tianjin.

References

  1. [1]
    Y. M. Wu, N. Sun, Y. C. Fang, D. K. Liang. An increased nonlinear coupling motion controller for underactuated multi-TORA systems: Theoretical design and hardware experimentation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, to be published. DOI: 10.1109/TSMC.2017.2723478.Google Scholar
  2. [2]
    H. De Plinval, P. Morin, P. Mouyon. Stabilization of a class of underactuated vehicles with uncertain position measurements and application to visual servoing. Automatica, vol. 77, pp. 155–169, 2017. DOI: 10.1016/j.automatica. 2016.11.012.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. Ashrafiuon, S. Nersesov, G. Clayton. Trajectory tracking control of planar underactuated vehicles. IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 1959–1965, 2017. DOI: 10.1109/TAC.2016.2584180.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Mirzaei, N. Meskin, F. Abdollahi. Robust consensus of autonomous underactuated surface vessels. IET Control Theory & Applications, vol. 11, no. 4, pp. 486–494, 2017. DOI: 10.1049/iet-cta.2016.0930.MathSciNetCrossRefGoogle Scholar
  5. [5]
    B. S. Park, J. W. Kwon, H. Kim. Neural network-based output feedback control for reference tracking of underactuated surface vessels. Automatica, vol. 77, pp. 353–359, 2017. DOI: 10.1016/j.automatica.2016.11.024.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Sun, Y. M. Wu, Y. C. Fang, H. Chen, B. Lu. Nonlinear continuous global stabilization control for underactuated RTAC systems: Design, analysis, and experimentation. IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 1104–1115, 2017. DOI: 10.1109/TMECH.2016.2631550.CrossRefGoogle Scholar
  7. [7]
    N. Sun, Y. M. Wu, Y. C. Fang, H. Chen. A new triplestage stabilizing control method for two-wheeled inverted pendulum robots. In Proceedings of IEEE International Conference on Real-time Computing and Robotics, Angkor Wat, Cambodia, pp. 27–32, 2016. DOI: 10.1109/RCAR.2016.7783996.Google Scholar
  8. [8]
    J. Smoczek, J. Szpytko. Particle swarm optimizationbased multivariable generalized predictive control for an overhead crane. IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 258–268, 2017. DOI: 10.1109/TMECH.2016.2598606.CrossRefGoogle Scholar
  9. [9]
    N. Sun, Y. C. Fang, H. Chen, B. Lu, Y. M. Fu. Slew/translation positioning and swing suppression for 4DOF tower cranes with parametric uncertainties: Design and hardware experimentation. IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6407–6418, 2016. DOI: 10.1109/TIE.2016.2587249.Google Scholar
  10. [10]
    N. Sun, Y. C. Fang. Nonlinear tracking control of underactuated cranes with load transferring and lowering: Theory and experimentation. Automatica, vol. 50, no. 9, pp. 2350–2357, 2014. DOI: 10.1016/j.automatica.2014.07. 023.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    N. Sun, Y. C. Fang, H. Chen, B. Lu. Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics. IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 2135–2146, 2017. DOI: 10.1109/TIE.2016.2623258.CrossRefGoogle Scholar
  12. [12]
    A. Roza, M. Maggiore, L. Scardovi. Local and distributed rendezvous of underactuated rigid bodies. IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3835–3847, 2017. DOI: 10.1109/TAC.2017.2650562.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Sun, Y. M. Wu, Y. C. Fang, H. Chen, B. Lu. Nonlinear continuous global stabilization control for underactuated RTAC systems: Design, analysis, and experimentation. IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 1104–1115, 2017. DOI: 10.1109/TMECH.2016.2631550.CrossRefGoogle Scholar
  14. [14]
    Z. B. Li, C. X. Zhou, Q. G. Zhu, R. Xiong. Humanoid balancing behavior featured by underactuated foot motion. IEEE Transactions on Robotics, vol. 33, no. 2, pp. 298–312, 2017. DOI: 10.1109/TRO.2016.2629489.CrossRefGoogle Scholar
  15. [15]
    S. Mahjoub, F. Mnif, N. Derbel. Second-order sliding mode approaches for the control of a class of underactuated systems. International Journal of Automation and Computing, vol. 12, no. 2, pp. 134–141, 2015. DOI: 10.1007/s11633-015-0880-3.CrossRefGoogle Scholar
  16. [16]
    A. H. D. Markazi, M. Maadani, S. H. Zabihifar, N. Doost-Mohammadi. Adaptive fuzzy sliding mode control of under-actuated nonlinear systems. International Journal of Automation and Computing, vol. 15, no. 3, pp. 364–376, 2018. DOI: 10.1007/s11633-017-1108-5.CrossRefGoogle Scholar
  17. [17]
    B. K. Sahu, B. Subudhi, M. M. Gupta. Stability analysis of an underactuated autonomous underwater vehicle using extended-Routh’s stability method. International Journal of Automation and Computing, vol. 15, no. 3, pp. 299–309, 2018. DOI: 10.1007/s11633-016-0992-4.CrossRefGoogle Scholar
  18. [18]
    M. Hashemi, J. Askari, J. Ghaisari, M. Kamali. Robust adaptive actuator failure compensation for a class of uncertain nonlinear systems. International Journal of Automation and Computing, vol. 14, no. 6, pp. 719–728, 2017. DOI: 10.1007/s11633-016-1016-0.CrossRefGoogle Scholar
  19. [19]
    W. Sun, W. X. Yuan, Y. Q. Wu. Adaptive tracking control of mobile manipulators with affine constraints and under-actuated joints. International Journal of Automation and Computing, 2016, to be published. DOI: 10.1007/s11633-015-0934-6.Google Scholar
  20. [20]
    R. M. T. R. Ismail, N. D. That, Q. Ha. Modelling and robust trajectory following for offshore container crane systems. Automation in Construction, vol. 59, pp. 179–187, 2015. DOI: 10.1016/j.autcon.2015.05.003.CrossRefGoogle Scholar
  21. [21]
    D. Kim, Y. Park. 3-Dimensional position control scheme for mobile harbor crane. In Proceedings of the 15th International Conference on Control, Automation and Systems, Busan, South Korea, pp. 2058–2061, 2015. DOI: 10.1109/ICCAS.2015.7364707.Google Scholar
  22. [22]
    J. Huang, E. Maleki, W. Singhose. Dynamics and swing control of mobile boom cranes subject to wind disturbances. IET Control Theory & Applications, vol. 7, no. 9, pp. 1187–1195, 2013. DOI: 10.1049/iet-cta.2012.0957.MathSciNetCrossRefGoogle Scholar
  23. [23]
    Y. C. Fang, P. C. Wang, N. Sun, Y. C. Zhang. Dynamics analysis and nonlinear control of an offshore boom crane. IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 414–427, 2014. DOI: 10.1109/TIE.2013.2251731.CrossRefGoogle Scholar
  24. [24]
    Q. H. Ngo, K. S. Hong. Sliding-mode antisway control of an offshore container crane. IEEE/ASME Transactions on Mechatronics, vol. 17, no. 2, pp. 201–209, 2012. DOI: 10.1109/TMECH.2010.2093907.Google Scholar
  25. [25]
    W. He, S. S. Ge, S. Zhang. Adaptive boundary control of a flexible marine installation system. Automatica, vol. 47, no. 12, pp. 2728–2734, 2011. DOI: 10.1016/j.automatica. 2011.09.025.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    N. P. Nguyen, T. N. Phan, Q. H. Ngo. Autonomous offshore container crane system using a fuzzy-PD logic controller. In Proceedings of the 16th International Conference on Control, Automation and Systems, Gyeongju, South Korea, pp. 1093–1098, 2016. DOI: 10.1109/ICCAS.2016.7832447.Google Scholar
  27. [27]
    N. Sun, Y. M. Wu, Y. C. Fang, H. Chen. Nonlinear antiswing control for crane systems with double-pendulum swing effects and uncertain parameters: Design and experiments. IEEE Transactions on Automation Science and Engineering, 2017, to be published. DOI: 10.1109/TASE. 2017.2723539.Google Scholar
  28. [28]
    N. Sun, Y. C. Fang, Y. M. Wu, H. Chen. Adaptive positioning and swing suppression control of underactuated cranes exhibiting double-pendulum dynamics: Theory and experimentation. In Proceedings of Youth Academic Annual Conference of Chinese Association of Automation, Wuhan, China, pp. 87–92, 2016. DOI: 10.1109/YAC.2016. 7804870.Google Scholar
  29. [29]
    N. Sun, Y. M. Wu, H. Chen, Y. C. Fang. An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments. Mechanical Systems and Signal Processing, vol. 102, pp. 87–101, 2018. DOI: 10.1016/j.ymssp.2017.09.027.CrossRefGoogle Scholar
  30. [30]
    B. Lu, Y. C. Fang, N. Sun. A new sliding-mode like nonlinear controller for overhead cranes with smooth control inputs. In Proceedings of American Control Conference, Boston, USA, pp. 252–257, 2016. DOI: 10.1109/ACC.2016. 7524924.Google Scholar
  31. [31]
    H. Chen, Y. C. Fang, N. Sun. A swing constraint guaranteed MPC algorithm for underactuated overhead cranes. IEEE/ASME Transactions on Mechatronics, vol. 21, no. 5, pp. 2543–2555, 2016. DOI: 10.1109/TMECH.2016.2558202.CrossRefGoogle Scholar
  32. [32]
    H. Chen, Y. C. Fang, N. Sun. Optimal trajectory planning and tracking control method for overhead cranes. IET Control Theory & Applications, vol. 10, no. 6, pp. 692–699, 2016. DOI: 10.1049/iet-cta.2015.0809.MathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Böck, A. Kugi. Real-time nonlinear model predictive path-following control of a laboratory tower crane. IEEE Transactions on Control Systems Technology, vol. 22, no. 4, pp. 1461–1473, 2014. DOI: 10.1109/TCST.2013. 2280464.CrossRefGoogle Scholar
  34. [34]
    W. He, S. S. Ge. Cooperative control of a nonuniform gantry crane with constrained tension. Automatica, vol. 66, pp. 146–154, 2016. DOI: 10.1016/j.automatica.2015. 12.026.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M. Yayla, A. T. Kutay. Adaptive control algorithm for linear systems with matched and unmatched uncertainties. In Proceedings of the 55th Conference on Decision and Control, Las Vegas, USA, pp. 2975–2980, 2016. DOI: 10.1109/CDC.2016.7798713.Google Scholar
  36. [36]
    G. C. Yang, J. Y. Yao, G. G. Le, D. W. Ma. Asymptotic output tracking control of electro-hydraulic systems with unmatched disturbances. IET Control Theory & Applications, vol. 10, no. 18, pp. 2543–2551, 2016. DOI: 10.1049/iet-cta.2016.0702.Google Scholar
  37. [37]
    H. B. Sun, L. Guo. Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances. IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no. 2, pp. 482–489, 2017. DOI: 10.1109/TNNLS. 2015.2511450.MathSciNetCrossRefGoogle Scholar
  38. [38]
    B. Lu, Y. C. Fang, N. Sun, X. Y. Wang. Antiswing control of offshore boom cranes with ship roll disturbances. IEEE Transactions on Control Systems Technology, vol. 26, no. 2, pp. 740–747, 2018. DOI: 10.1109/TCST.2017. 2679060.CrossRefGoogle Scholar
  39. [39]
    Y. Z. Qian, Y. C. Fang, B. Lu. Adaptive repetitive learning control for an offshore boom crane. Automatica, vol. 82, pp. 21–28, 2017. DOI: 10.1016/j.automatica.2017. 04.003.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    W. He, S. S. Ge, B. V. E. How, Y. S. Choo, K. S. Hong. Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica, vol. 47, no. 4, pp. 722–732, 2011. DOI: 10.1016/j.automatica.2011.01.064.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    N. Sun, Y. C. Fang, H. Chen, Y. M. Wu, B. Lu. Nonlinear antiswing control of offshore cranes with unknown parameters and persistent ship-induced perturbations: Theoretical design and hardware experiments. IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 2629–2641, 2018. DOI: 10.1109/TIE.2017.2767523.CrossRefGoogle Scholar
  42. [42]
    N. Sun, Y. C. Fang, H. Chen, Y. M. Fu, B. Lu. Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements: Design, analysis, and experiments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, to be published. DOI: 10.1109/TSMC. 2017.2700393.Google Scholar
  43. [43]
    M. A. Hannan, W. Bai. Analysis of nonlinear dynamics of fully submerged payload hanging from offshore crane vessel. Ocean Engineering, vol. 128, pp. 132–146, 2016. DOI: 10.1016/j.oceaneng.2016.10.030.CrossRefGoogle Scholar
  44. [44]
    Q. H. Ngo, N. P. Nguyen, C. N. Nguyen, T. H. Tran, Q. P. Ha. Fuzzy sliding mode control of an offshore container crane. Ocean Engineering, vol. 140, pp. 125–134, 2017. DOI: 10.1016/j.oceaneng.2017.05.019.CrossRefGoogle Scholar
  45. [45]
    N. Sun, Y. C. Fang. New energy analytical results for the regulation of underactuated overhead cranes: An end-effector motion-based approach. IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4723–4734, 2012. DOI: 10.1109/TIE.2012.2183837.CrossRefGoogle Scholar
  46. [46]
    N. Sun, Y. C. Fang, H. Chen, B. Lu. Energy-based control of double pendulum cranes. In Proceedings of IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems, Shenyang, China, pp. 258–263, 2015. DOI: 10.1109/CYBER.2015.7287945.Google Scholar
  47. [47]
    Y. Z. Qian, Y. C. Fang. Dynamics analysis of an offshore ship-mounted crane subject to sea wave disturbances. In Proceedings of the 12th World Congress on Intelligent Control and Automation, Guilin, China, pp. 1251–1256, 2016. DOI: 10.1109/WCICA.2016.7578629.Google Scholar
  48. [48]
    N. Sun, Y. C. Fang, H. Chen. A new antiswing control method for underactuated cranes with unmodeled uncertainties: Theoretical design and hardware experiments. IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 453–465, 2015. DOI: 10.1109/TIE.2014.2327569.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Robotics and Automatic Information SystemNankai UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Intelligent RoboticsNankai UniversityTianjinChina

Personalised recommendations