Advertisement

Study on Information Diffusion Analysis in Social Networks and Its Applications

  • Biao Chang
  • Tong Xu
  • Qi Liu
  • En-Hong Chen
Review

Abstract

Due to the prevalence of social network services, more and more attentions are paid to explore how information diffuses and users affect each other in these networks, which has a wide range of applications, such as viral marketing, reposting prediction and social recommendation. Therefore, in this paper, we review the recent advances on information diffusion analysis in social networks and its applications. Specifically, we first shed light on several popular models to describe the information diffusion process in social networks, which enables three practical applications, i.e., influence evaluation, influence maximization and information source detection. Then, we discuss how to evaluate the authority and influence based on network structures. After that, current solutions to influence maximization and information source detection are discussed in detail, respectively. Finally, some possible research directions of information diffusion analysis are listed for further study.

Keywords

Information diffusion influence evaluation influence maximization information source detection social network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by National Natural Science Foundation of China (Nos. 61703386, U1605251 and 91546103), the Anhui Provincial Natural Science Foundation (No. 1708085QF140), the Fundamental Research Funds for the Central Universities (No. WK2150110006), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2014299).

References

  1. [1]
    Zephoria. The top 20 valuable Facebook statistics-updated April 2018. [Online], Available: https://doi.org/zephoria.com/top-15-valuable-facebook-statistics/, October 1,2017.Google Scholar
  2. [2]
    H. Kwak, C. Lee, H. Park, S. Moon. What is Twitter, a social network or a news media? In Proceedings of the 19th International Conference on World Wide Web, New York, USA, pp. 591–600, 2010.Google Scholar
  3. [3]
    H. P. Zhang, R. Q. Zhang, Y. P. Zhao, B. J. Ma. Big data modeling and analysis of microblog ecosystem. International Journal of Automation and Computing, vol. 11, no. 2, pp. 119–127, 2014. DOI: 10.1007/s11633-014-0774-9.Google Scholar
  4. [4]
    D. Kempe, J. Kleinberg, É. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Washington DC, USA, pp. 137–146, 2003. DOI: 10.1145/956750. 956769.Google Scholar
  5. [5]
    J. Leskovec, L. A. Adamic, B. A. Huberman. The dynamics of viral marketing. ACM Transactions on the Web, vol. 1, no. 1, pp. 5, 2007. DOI: 10.1145/1232722.1232727.Google Scholar
  6. [6]
    M. Richardson, P. Domingos. Mining knowledge-sharing sites for viral marketing. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Edmonton, Canada, pp. 61–70, 2002. DOI: 10.1145/775047.775057.Google Scholar
  7. [7]
    C. Ma, C. Zhu, Y. J. Fu, H. S. Zhu, G. Q. Liu, E. H. Chen. Social user profiling: A social-aware topic modeling perspective. In Proceedings of the 22nd International Conference on Database Systems for Advanced Applicattions, Springer, Suzhou, China, pp. 610–622, 2017. DOI: 10.1007/978-3-319-55699-4_38.Google Scholar
  8. [8]
    T. Xu, H. S. Zhu, X. Y. Zhao, Q. Liu, H. Zhong, E. H. Chen, H. Xiong. Taxi driving behavior analysis in latent vehicle-to-vehicle networks: A social influence perspective. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, USA, pp. 1285–1294, 2016. DOI: 10.1145/2939672.2939799.Google Scholar
  9. [9]
    X. Y. Zhao, T. Xu, Q. Liu, H. Guo. Exploring the choice under conflict for social event participation. In Proceedings of the 21st International Conference on Database Systems for Advanced Applications, Springer, Dallas, USA, pp. 396–411, 2016. DOI: 10.1007/978-3-319-32025-0—25.Google Scholar
  10. [10]
    L. Backstrom, J. Leskovec. Supervised random walks: Predicting and recommending links in social networks. In Proceedings of the 4th ACM International Conference on Web Search and Data Mining, ACM, Hong Kong, China, pp. 635–644, 2011. DOI: 10.1145/1935826.1935914.Google Scholar
  11. [11]
    D. Liben-Nowell, J. Kleinberg. The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology, vol. 58, no. 7, pp. 1019–1031, 2007. DOI: 10.1002/asi.v58:7.Google Scholar
  12. [12]
    T. Xu, H. S. Zhu, E. H. Chen, B. X. Huai, H. Xiong, J. L. Tian. Learning t o annotate via social interaction analytics. Knowledge and Information Systems, vol. 41, no. 2, pp. 251–276, 2014. DOI: 10.1007/s10115-013-0717-8.Google Scholar
  13. [13]
    S. Fortunato. Community detection in graphs. Physics Reports, vol. 486, no. 3, pp. 75–174, 2010. DOI: 10.1016/j. physrep.2009.11.002.MathSciNetGoogle Scholar
  14. [14]
    S. Fortunato, M. Barthlemy. Resolution limit in community detection. Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 1, pp. 36–41, 2007. DOI: 10.1073/pnas.0605965104.Google Scholar
  15. [15]
    M. Girvan, M. E. J. Newman. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7821–7826, 2002.MathSciNetMATHGoogle Scholar
  16. [16]
    J. Goldenberg, B. Libai, E. Muller. Talk of t he network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters, vol. 12, no. 3, pp. 211–223, 2001. DOI: 10.1023/A:1011122126881.Google Scholar
  17. [17]
    M. Granovetter. Threshold models of collective behavior. American Journal of Sociology, vol. 83, no. 6, pp. 1420–1443, 1978. DOI: 10.1086/226707.Google Scholar
  18. [18]
    W. O. Kermack, A. G. McKendrick. Contributions t o the mathematical theory of epidemics -II. The problem of endemicity. Bulletin of Mathematical Biology, vol. 53, no. 1–2, pp. 57–87, 1991. DOI: 10.1007/BF02464424.Google Scholar
  19. [19]
    M. Cataldi, L. Di Caro, C. Schifanella. Emerging topic detection on Twitter based on temporal and social terms evaluation. In Proceedings of the 10th International Workshop on Multimedia Data Mining, ACM, Washingt o n DC, USA, 2010. DOI: 10.1145/1814245.1814249.Google Scholar
  20. [20]
    M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, H. A. Makse. Identification of influent i a l spreaders in complex networks. Nature Physics, vol. 6, no. 11, pp. 888–893, 2010. DOI: 10.1038/nphys1746.Google Scholar
  21. [21]
    J. Zhang, J. Tang, J. Z. Li. Expert finding in a social network. In Proceedings of the 12th International Conference on Database Systems for Advanced Applications, Springer, Bangkok, Thailand, pp. 1066–1069, 2007. DOI: 10.1007/978-3-540-71703-4—106.Google Scholar
  22. [22]
    H. S. Zhu, E. H. Chen, H. Xiong, H. H. Cao, J. L. Tian. Ranking user authority with relevant knowledge categories for expert finding. World Wide Web, vol. 17, no. 5, pp. 1081–1107, 2014. DOI: 10.1007/s11280-013-0217-5.Google Scholar
  23. [23]
    H. S. Zhu, E. H. Chen, H. H. Cao. Finding experts in tag based knowledge sharing communities. In Proceedings of the 5th International Conference on Knowledge Science, Engineering and Management, Springer, Irvine, USA, pp. 183–195, 2011. DOI: 10.1007/978-3-642-25975-3—17.Google Scholar
  24. [24]
    J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Jose, USA, pp. 420–429, 2007. DOI: 10.1145/1281192.1281239.Google Scholar
  25. [25]
    L. Zou, Z. D. Wang, D. H. Zhou. Event-based control and f i l t e r i ng of networked systems: A survey. International Journal of Automation and Computing, vol. 14, no. 3, pp. 239–253, 2017. DOI: 10.1007/s11633-017-1077-8.Google Scholar
  26. [26]
    B. Chang, F. D. Zhu, E. H. Chen, Q. Liu. Information source detection via maximum a posteriori estimation. In Proceedings of IEEE International Conference on Data Mining, IEEE, Atlantic City, USA, pp. 21–30, 2015. DOI: 10.1109/ICDM.2015.116.Google Scholar
  27. [27]
    V. Fioriti, M. Chinnici. Predicting the sources of an outbreak with a spectral technique. Applied Mathematical Sciences, vol. 8, pp. 6775–6782, 2014. DOI: 10.12988/ams. 2014.49693.Google Scholar
  28. [28]
    B. A. Prakash, J. Vreeken, C. Faloutsos. Spotting culp r i ts in epidemics: How many and which ones? In Proceedings of the 12th International Conference on Data Mining, IEEE, Brussels, Belgium, pp. 11–20, 2012. DOI: 10.1109/ICDM.2012.136.Google Scholar
  29. [29]
    P. Gundecha, Z. Feng, H. Liu. Seeking provenance of information using social media. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, ACM, San Francisco, USA, pp. 1691–1696, 2013. DOI: 10.1145/2505515.2505633.Google Scholar
  30. [30]
    D. Shah, T. Zaman. Rumors in a network: Who’s the culprit? IEEE Transactions on Information Theory, vol. 57, no. 8,pp. 5163–5181,2011.DOI:10.1109/TIT.2011.2158885.MathSciNetMATHGoogle Scholar
  31. [31]
    A. Goyal, F. Bonchi, L. V. S. Lakshmanan. Learning influence probabilities in social networks. In Proceedings of the 3rd ACM International Conference on Web Search and Web Data Mining, ACM, New York, USA, pp. 241–250, 2010. DOI: 10.1145/1718487.1718518.Google Scholar
  32. [32]
    B. Ryan, N. C. Gross. The diffusion of hybrid seed corn in two Iowa communities. Rural Sociology, vol. 8, no. 1, pp.15-24, 1943.Google Scholar
  33. [33]
    H. Y. Zhang, S. Mishra, M. T. Thai. Recent advances in information diffusion and influence maximization in complex social networks. Opportunistic Mobile Social Networks, J. Wu, Y. S. Wang, Eds., USA: CRC Press, 2014.Google Scholar
  34. [34]
    T. Lappas, E. Terzi, D. Gunopulos, H. Mannila. Finding effectors in social networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Washington DC, USA, pp. 1059–1068,2010. DOI: 10.1145/1835804.1835937.Google Scholar
  35. [35]
    D. Shah, T. Zaman. Detecting sources of computer viruses in networks: Theory and experiment. In Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, ACM, New York, USA, pp. 203–214, 2010. DOI: 10.1145/1811039. 1811063.Google Scholar
  36. [36]
    R. Zafarani, M. A. Abbasi, H. Liu. Social Media Mining: An Introduction, Cambridge, UK: Cambridge University Press, 2014.Google Scholar
  37. [37]
    Y. Yao, X. R. Luo, F. X. Gao, S. L. Ai. Research of a potential worm propagation model based on pure P2P principle. In Proceedings of International Conference on Communication Technology, IEEE, Guilin, China, 2006. DOI: 10.1109/ICCT.2006.342006.Google Scholar
  38. [38]
    H. W. Hethcote. The mathematics of infectious diseases. SIAM Review, vol. 42, no. 4, pp. 599–653, 2000. DOI: 10.1137/S0036144500371907.MathSciNetMATHGoogle Scholar
  39. [39]
    K. L. Cooke, P. van de Driessche. Analysis of an SEIRS epidemic model with t w o delays. Journal of Mathematical Biology, vol. 35, no. 2, pp. 240–260, 1996. DOI: 10.1007/s002850050051.Google Scholar
  40. [40]
    Y. Xiang, X. Fan, W. T. Zhu. Propagation of active worms: A survey. International Journal of Computer Systems Science and Engineering, vol. 24, no. 3, pp. 157–172, 2009.Google Scholar
  41. [41]
    H. S. Zhu, E. H. Chen, H. H. Cao, J. L. Tian. Contextaware expert finding in t ag based knowledge sharing communities. International Journal of Knowledge and Systems Science, vol. 3, no. 1, pp. 48–63, 2012. DOI: 10.4018/jkss.2012010104.Google Scholar
  42. [42]
    H. S. Zhu, H. H. Cao, H. Xiong, E. H. Chen, J. L. Tian. Towards expert finding by leveraging relevant categories in authority ranking. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, ACM, Glasgow, UK, pp. 2221–2224, 2011. DOI: 10.1145/2063576.2063931.Google Scholar
  43. [43]
    B. A. Prakash, C. Faloutsos. Understanding and managing cascades on large graphs. Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 2024–2025, 2012. DOI: 10.14778/2367502.2367567.Google Scholar
  44. [44]
    B. Xiang, Q. Liu, E. H. Chen, H. Xiong, Y. Zheng, Y. Yang. PageRank with priors: An influence propagation perspective. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, pp. 2740–2746, 2013.Google Scholar
  45. [45]
    S. Y. Lin, W. X. Hong, D. D. Wang, T. Li. A survey on expert finding techniques. Journal of Intelligent Information Systems, vol. 49, no. 2, pp. 255–279, 2017. DOI: 10.1007/s10844-016-0440-5.Google Scholar
  46. [46]
    A. Bavelas. Communication patterns in task-oriented groups. The Journal of the Acoustical Society of America, vol. 22, no. 6, pp. 725–730, 1950. DOI: 10.1121/1.1906679.Google Scholar
  47. [47]
    L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, vol. 40, no. 1, pp. 3541, 1977. DOI: 10.2307/3033543.Google Scholar
  48. [48]
    C. Jordan. Sur les assemblages de lignes. Journal fr die reine und angewandte Mathematik, vol. 1869, no. 70, pp. 185–190, 1869. DOI: 10.1515/crll.1869.70.185.MathSciNetMATHGoogle Scholar
  49. [49]
    L. Page, S. Brin, R. Motwani, T. Winograd. The PageRank citation ranking: Bringing order to the web, Technical Report SIDL-WP-1999-0120, Stanford University, USA, 1999.Google Scholar
  50. [50]
    P. Berkhin. Asurveyo. PageRank computing. Internet Mathematics, vol. 2, no. 1, pp. 73–120, 2005. DOI: 10.1080/15427951.2005.10129098.MathSciNetMATHGoogle Scholar
  51. [51]
    T. H. Haveliwala. Topic-sensitive PageRank. In Proceedings of the 11th International Conference on World Wide Web, ACM, New York, USA, pp. 517–526, 2002.Google Scholar
  52. [52]
    J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, vol. 46, no. 5, pp. 604–632, 1999. DOI: 10.1145/324133.324140.MathSciNetMATHGoogle Scholar
  53. [53]
    J. S. Weng, E. P. Lim, J. Jiang, Q. He. TwitterRank: Finding topic-sensitive influential twitterers. In Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, ACM, New York, USA, pp. 261–270, 2010. DOI: 10.1145/1718487.1718520.Google Scholar
  54. [54]
    Q. Liu, B. Xiang, E. H. Chen, Y. Ge, H. Xiong, T. F. Bao, Y. Zheng. Influential seed items recommendation. In Proceedings of the 6th ACM Conference on Recommender Systems, ACM, Dublin, Ireland, pp. 245–248, 2012. DOI: 10.1145/2365952.2366005.Google Scholar
  55. [55]
    W. Chen, C. Wang, Y. J. Wang. Scalable influence maximization for prevalent viral marketing in large-scale social networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Washington DC, USA, pp. 1029–1038, 2010. DOI: 10.1145/1835804.1835934.Google Scholar
  56. [56]
    W. Chen, Y. F. Yuan, L. Zhang. Scalable influence maximization in social networks under the linear threshold model. In Proceedings of the 10th International Conference on Data Mining, IEEE, Sydney, Australia, pp. 88–97, 2010. DOI: 10.1109/ICDM.2010.118.Google Scholar
  57. [57]
    C. C. Aggarwal, A. Khan, X. F. Yan. On flow authority discovery in social networks. In Proceedings of SIAM International Conference on Data Mining, SIAM, Mesa, USA, pp. 522–533, 2011. DOI: 10.1137/1.9781611972818.45.Google Scholar
  58. [58]
    Y. Yang, E. H. Chen, Q. Liu, B. Xiang, T. Xu, S. A. Shad. On approximation of real-world influence spread. In Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, Bristol, UK, pp. 548–564, 2012. DOI: 10.1007/978-3-642-33486-3—35.Google Scholar
  59. [59]
    J. Yang, J. Leskovec. Modeling information diffusion in implicit networks. In Proceedings of the10th International Conference on Data Mining, IEEE, Sydney, Australia, pp. 599–608, 2010. DOI: 10.1109/ICDM.2010.22.Google Scholar
  60. [60]
    Q. Liu, B. Xiang, N. J. Yuan, E. H. Chen, H. Xiong, Y. Zheng, Y. Yang. An influence propagation view of PageRank. ACM Transactions on Knowledge Discovery from Data, vol. 11, no. 3, pp. 30, 2017. DOI: 10.1145/3046941.Google Scholar
  61. [61]
    J. Tang, J. M. Sun, C. Wang, Z. Yang. Social influence analysis in large-scale networks. In Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining, ACM, Paris, France, pp. 807–816, 2009. DOI: 10.1145/1557019.1557108.Google Scholar
  62. [62]
    Q. Liu, B. Xiang, L. Zhang, E. H. Chen, C. Tan, J. Chen. Linear computation for independent social influence. In Proceedings of the 13th International Conference on Data Mining, IEEE, Dallas, USA, pp. 468–477, 2013. DOI: 10.1109/ICDM.2013.48.Google Scholar
  63. [63]
    Q. Liu, B. Xiang, E. H. Chen, H. Xiong, F. S. Tang, J. X. Yu. Influence maximization over large-scale social networks: A bounded linear approach. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, ACM, Shanghai, China, pp. 171–180, 2014. DOI: 10.1145/2661829. 2662009.Google Scholar
  64. [64]
    G. L. Nemhauser, L. A. Wolsey, M. L. Fisher. An analysis of approximations for maximizing submodular set functions-I. Mathematical Programming, vol. 14, pp. 265–294,1978.MathSciNetMATHGoogle Scholar
  65. [65]
    A. Goyal, W. Lu, L. V. S. Lakshmanan. C E L F + +: Optimizing the greedy algorithm for influence maximization in social networks. In Proceedings of the 20th International Conference Companion on World Wide Web, ACM, Hyderabad, India, pp. 47–48, 2011. DOI: 10.1145/1963192.1963217.Google Scholar
  66. [66]
    K. Jung, W. Heo, W. Chen. IRIE: Scalable and robust influence maximization in social networks. In Proceedings of the 12th International Conference on Data Mining, IEEE, Brussels, Belgium, pp. 918–923, 2012. DOI: 10.1109/ICDM.2012.79.Google Scholar
  67. [67]
    M. Kimura, K. Saito. Tractable models for information diffusion in social networks. In Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Springer, Berlin, Germany, pp. 259–271, 2006. DOI: 10.1007/11871637—27.Google Scholar
  68. [68]
    W. Chen, Y. J. Wang, S. Y. Yang. Efficient influence maximization in social networks. In Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining, ACM, Paris, France, pp. 199–208, 2009. DOI: 10.1145/1557019.1557047.Google Scholar
  69. [69]
    A. Goyal, W. Lu, L. V. S. Lakshmanan. SIMPATH: An efficient algorithm for influence maximization under the linear threshold model. In Proceedings of the 11th International Conference on Data Mining, IEEE, Vancouver, Canada, pp. 211–220, 2011. DOI: 10.1109/ICDM. 2011.132.Google Scholar
  70. [70]
    C. Borgs, M. Brautbar, J. Chayes, B. Lucier. Maximizing social influence in nearly optimal time. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, Illinois, USA, pp. 946–957, 2014. DOI: 10.1137/1.9781611973402.70.Google Scholar
  71. [71]
    Y. Z. Tang, X. K. Xiao, Y. C. Shi. Influence maximization: Near-optimal time complexity meets practical efficiency. In Proceedings of ACM SIGMOD International Conference on Management of Data, ACM, Snowbird, USA, pp. 75–86, 2014. DOI: 10.1145/2588555.2593670.Google Scholar
  72. [72]
    V. V. Vazirani. Approximation Algorithms, Berlin Heidelberg, Germany: Springer, 2013. DOI: 10.1007/978-3-662-04565-7.Google Scholar
  73. [73]
    Y. Z. Tang, Y. C. Shi, X. K. Xiao. Influence maximization in near-linear time: A martingale approach. In Proceedings of ACM SIGMOD International Conference on Management of Data, ACM, Melbourne, Australia, pp. 1539–1554, 2015. DOI: 10.1145/2723372.2723734.Google Scholar
  74. [74]
    E. Cohen, D. Delling, T. Pajor, R. F. Werneck. Sketchbased influence maximization and computation: Scaling up with guarantees. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, ACM, Shanghai, China, pp. 629–638, 2014. DOI: 10.1145/2661829.2662077.Google Scholar
  75. [75]
    H. T. Nguyen, M. T. Thai, T. N. Dinh. Stop-and-stare: Optimal sampling algorithms for viral marketing in billion-scale networks. In Proceedings of International Conference on Management of Data, ACM, San Francisco, USA, pp. 695–710, 2016. DOI: 10.1145/2882903.2915207.Google Scholar
  76. [76]
    K. K. Huang, S. B. Wang, G. Bevilacqua, X. K. Xiao, L. V. S. Lakshmanan. Revisiting the stop-and-stare algorithms for influence maximization. Proceedings of the VLDB Endowment, vol. 10, no. 9, pp. 913–924, 2017. DOI: 10.14778/3099622.3099623.Google Scholar
  77. [77]
    Y. Wang, G. Cong, G. J. Song, K. Q. Xie. Communitybased greedy algorithm for mining top-K influential nodes in mobile social networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Washington DC, USA, pp. 1039–1048, 2010. DOI: 10.1145/1835804. 1835935.Google Scholar
  78. [78]
    Z. F. Wang, H. Wang, Q. Liu, E. H. Chen. Influential nodes selection: A data reconstruction perspective. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, ACM, Gold Coast, Australia, pp. 879–882, 2014. DOI: 10.1145/2600428.2609464.Google Scholar
  79. [79]
    Q. Y. Jiang, G. J. Song, G. Cong, Y. Wang, W. J. Si, K. Q. Xie. Simulated annealing based influence maximization insocial networks. In Proceedings of the 25th AAAI Conference on Artificial Intelligence, AAAI, San Francisco, USA, pp. 127–132, 2011.Google Scholar
  80. [80]
    M. G. Rodriguez, B. Schölkopf. Influence maximization in continuous time diffusion networks. https://doi.org/arxiv.org/abs/1205.1682, 2012.Google Scholar
  81. [81]
    Y. K. Wang, J. H. Zhu, Q. Ming. Incremental influence maximization for dynamic social networks. In Proceedings of the 3rd International Conference of Pioneering Computer Scientists, Engineers and Educators, Springer, Changsha, China, pp. 13–27, 2017. DOI: 10.1007/978-981-10-6388-6—2.Google Scholar
  82. [82]
    E. Güney. On the optimal solution of budgeted influence maximization problem in social networks. Operational Research, to be published. DOI: 10.1007/s12351-017-0305-x.Google Scholar
  83. [83]
    H. Nguyen, R. Zheng. On budgeted influence maximizat i o n in social networks. IEEE Journal on Selected Areas in Communications, vol. 31, no. 6, pp. 1084–1094, 2013. DOI: 10.1109/JSAC.2013.130610.Google Scholar
  84. [84]
    Y. Yang, X. B. Mao, J. Pei, X. F. He. Continuous influence maximization: What discounts should we offer t o social network users? In Proceedings of International Conference on Management of Data, ACM, San Francisco, USA, pp. 727–741, 2016. DOI: 10.1145/2882903.2882961.Google Scholar
  85. [85]
    C. Aslay, F. Bonchi, L. V. S. Lakshmanan, W. Lu. Revenue maximization in incentivized social advertising. Proceedings of the VLDB Endowment, vol. 10, no. 11, pp. 1238–1249, 2017. DOI: 10.14778/3137628.3137635.Google Scholar
  86. [86]
    F. H. Li, C. T. Li, M. K. Shan. Labeled influence maximization in social networks for target marketing. In Proceedings of the 3rd International Conference on Privacy, Security, Risk and Trust and the IEEE 3rd International Conference on Social Computing, IEEE, Boston, USA, pp. 560–563, 2011. DOI: 10.1109/PASSAT/SocialCom. 2011.152.Google Scholar
  87. [87]
    F. S. Tang, Q. Liu, H. S. Zhu, E. H. Chen, F. D. Zhu. Diversified social influence maximization. In Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, IEEE, Beijing, China, pp. 455–459, 2014. DOI: 10.1109/ASoNAM. 2014.6921625.Google Scholar
  88. [88]
    Q. Liu, Z. Dong, C. R. Liu, X. Xie, E. H. Chen, H. Xiong. Social marketing meets targeted customers: A typical user selection and coverage perspective. In Proceedings of IEEE International Conference on Data Mining, IEEE, Shenzhen, China, pp. 350–359, 2014. DOI: 10.1109/ICDM.2014.93.Google Scholar
  89. [89]
    Z. F. Wang, E. H. Chen, Q. Liu, Y. Yang, Y. Ge, B. Chang. Maximizing t he coverage of information propagation in social networks. In Proceedings of the 24th International Conference on Artificial Intelligence, AAAI, Buenos Aires, Argentina, pp. 2104–2110, 2015.Google Scholar
  90. [90]
    Z. F. Wang, Y. Yang, J. Pei, L. Y. Chu, E. H. Chen. Activity maximization by effective information diffusion in social networks. IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 11, pp. 2374–2387, 2017. DOI: 10.1109/TKDE.2017.2740284.Google Scholar
  91. [91]
    X. R. He, G. J. Song, W. Chen, Q. Y. Jiang. Influence blocking maximization in social networks under the competitive linear threshold model. In Proceedings of SIAM International Conference on Data Mining, SIAM, Anaheim, USA, pp. 463–474, 2012. DOI: 10.1137/1. 9781611972825.40.Google Scholar
  92. [92]
    J. H. Zhao, Q. P. Liu, L. Wang, X. F. Wang. Competitiveness maximization on complex networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, to be published. DOI: 10.1109/TSMC.2016.2636240.Google Scholar
  93. [93]
    G. W. Ma, Q. Liu, E. H. Chen, B. Xiang. Individual influence maximization via link recommendation. In Proceedings of the 16th International Conference on Web-age Information Management, Springer, Qingdao, China, pp. 42–56, 2015. DOI: 10.1007/978-3-319-21042-1—4.Google Scholar
  94. [94]
    J. J. Jiang, S. Wen, S. Yu, Y. Xiang, W. L. Zhou. Identif y i ng propagation sources in networks: State-of-the-art and comparative studies. IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 465481, 2017. DOI: 10.1109/COMST.2016.2615098.Google Scholar
  95. [95]
    W. X. Dong, W. Y. Zhang, C. W. Tan. Rooting out the rumor culprit from suspects. In Proceedings of IEEE International Symposium on Information Theory, IEEE, Istanbul, Turkey, pp. 2671–2675, 2013. DOI: 10.1109/ISIT. 2013.6620711.Google Scholar
  96. [96]
    Z. X. Wang, W. X. Dong, W. Y. Zhang, C. W. Tan. Rooting our rumor sources in online social networks: The value of diversity from multiple observations. IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 4, pp. 663–677, 2015. DOI: 10.1109/JSTSP.2015. 2389191.Google Scholar
  97. [97]
    W. Q. Luo, W. P. Tay, M. Leng. Identifying infection sources and regions in large networks. IEEE Transactions on Signal Processing, vol. 61, no. 11, pp. 2850–2865, 2013. DOI: 10.1109/TSP.2013.2256902.MathSciNetGoogle Scholar
  98. [98]
    X. M. Zhai, W. L. Wu, W. Xu. Cascade source inference in networks: A Markov chain monte Carlo approach. Computational Social Networks, vol. 2, no. 1, pp. 17, 2015. DOI: 10.1186/s40649-015-0017-4.Google Scholar
  99. [99]
    L. Zhang, T. Y. Jin, T. Xu, B. Chang, Z. F. Wang, E. H. Chen. A Markov chain monte Carlo approach for source detection in networks. In Proceedings of the 6th National Conference on Social Media Processing, Springer, Beijing, China, pp. 77–88, 2017. DOI: 10.1007/978-981-10-6805-8_7.Google Scholar
  100. [100]
    H. T. Nguyen, P. Ghosh, M. L. Mayo, T. N. Dinh. Multiple infection sources identification with provable guarantees. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, ACM, Indianapolis, USA, pp. 1663–1672, 2016. DOI: 10.1145/2983323.2983817.Google Scholar
  101. [101]
    S. Feizi, K. Duffy, M. Kellis, M. Médard. Network infusion to infer information sources in networks, Technical Report MIT-CSAIL-TR-2014-028, Computer Science and Artificial Intelligence Laboratory, USA, 2014.Google Scholar
  102. [102]
    R. Pena, X. Bresson, P. Vandergheynst. Source localizat i o n on graphs via L1 recovery and spectral graph theory. In Proceedings of the 12th Image, Video, and Multidimensional Signal Processing Workshop, IEEE, Bordeaux, France, 2016. DOI: 10.1109/IVMSPW.2016.7528230.Google Scholar
  103. [103]
    K. Zhu, L. Ying. Information source detection in networks: Possibility and impossibility results. In Proceedings of the 35th Annual IEEE International Conference on Computer Communications, IEEE, San Francisco, USA, 2016. DOI: 10.1109/INFOCOM.2016.7524363.Google Scholar
  104. [104]
    K. Zhu, L. Ying. Information source detection in the SIR model: A sample-path-based approach. IEEE/ACM Transactions on Networking, vol. 24, no. 1, pp. 408421, 2016. DOI: 10.1109/TNET.2014.2364972.Google Scholar
  105. [105]
    K. Zhu, L. Ying. A robust information source estimator with sparse observations. Computational Social Networks, vol. 1, no. 1, pp. 3, 2014. DOI: 10.1186/s40649-014-0003-2.Google Scholar
  106. [106]
    W. Q. Luo, W. P. Tay. Finding an infection source under the sis model. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Vancouver, Canada, pp. 2930–2934, 2013. DOI: 10.1109/ICASSP.2013.6638194.Google Scholar
  107. [107]
    W. Q. Luo, W. P. Tay, M. Leng. How to identify an infect i o n source with limited observations. IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 4, pp. 586–597, 2014. DOI: 10.1109/JSTSP.2014.2315533.Google Scholar
  108. [108]
    A. Y. Lokhov, M. Mézard, H. Ohta, L. Zdeborovâ. Inferring the origin of an epidemic with a dynamic messagepassing algorithm. Physical Review E, vol 90, no. 1, Article number 012801, 2014. DOI: 10.1103/PhysRevE.90. 012801.Google Scholar
  109. [109]
    W. H. Hu, W. P. Tay, A. Harilal, G. X. Xiao. Network infection source identification under the SIRI model. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Brisbane, Australia, pp. 1712–1716, 2015. DOI: 10.1109/ICASSP.2015. 7178263.Google Scholar
  110. [110]
    F. Altarelli, A. Braunstein, L. Dall’Asta, A. Lage-Castellanos, R. Zecchina. Bayesian inference of epidemics on networks via belief propagation. Physical Review Letters, vol. 112, no. 11, Article number 118701, 2014. DOI: 10.1103/PhysRevLett.112.118701. DOI: 10.1103/Phys-RevLett.112.118701.Google Scholar
  111. [111]
    F. Altarelli, A. Braunstein, L. Dall’Asta, A. Ingrosso, R. Zecchina. The patient-zero problem with noisy observations. Journal of Statistical Mechanics: Theory and Experiment, vol. 2014, no. 10, Article number 10016, 2014. DOI: 10.1088/1742-5468/2014/10/P10016. DOI: 10.1088/1742-5468/2014/10/P10016.Google Scholar
  112. [112]
    W. Y. Zang, P. Zhang, C. Zhou, L. Guo. Discovering mult i p le diffusion source nodes in social networks. Procedia Computer Science, vol. 29, pp. 443452, 2014. DOI: 10.1016/j.procs.2014.05.040.Google Scholar
  113. [113]
    Z. Feng, P. Gundecha, H. Liu. Recovering information recipients in social media v ia provenance. In Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, IEEE, Niagara Falls, Canada, pp. 706–711, 2013. DOI: 10.1109/AS〇NAM.2013. 6785780.Google Scholar
  114. [114]
    N. Karamchandani, M. Franceschetti. Rumor source detection under probabilistic sampling. In Proceedings of IEEE International Symposium on Information Theory, IEEE, Istanbul, Turkey, pp. 2184–2188, 2013. DOI: 10.1109/ISIT.2013.6620613.Google Scholar
  115. [115]
    D. Brockmann, D. Helbing. The hidden geometry of complex, network-driven contagion phenomena. Science, vol. 342, no. 6164, pp. 1337–1342, 2013. DOI: 10.1126/science. 1245200.Google Scholar
  116. [116]
    C. Y. Shi, Q. Zhang, T. G. Chu. Source identification of network diffusion processes with partial observations. In Proceedings of the 36th Chinese Control Conference, IEEE, Dalian, China, pp. 11296–11300, 2017. DOI: 10.23919/ChiCC.2017.8029159.Google Scholar
  117. [117]
    P. Zhang, J. He, G. D. Long, G. Y. Huang, C. Q. Zhang. Towards anomalous diffusion sources detection in a large network. ACM Transactions on Internet Technology, vol. 16, no. 1, pp. 24, 2016. DOI: 10.1145/2806889.Google Scholar
  118. [118]
    P. C. Pinto, P. Thiran, M. Vetterli. Locating the source of diffusion in large-scale networks. Physical Review Letters, vol. 109, no. 6, A r t i c le number 068702, 2012. DOI: 10.1103/PhysRevLett.109.068702. DOI: 10.1103/Phys-RevLett.109.068702.Google Scholar
  119. [119]
    A. Agaskar, Y. M. Lu. A fast Monte Carlo algorithm for source localization on graphs. In Proceedings of SPIE 8858, Wavelets and Sparsity XV, SPIE, San Diego, USA, 2013. DOI: 10.1117/12.2023039.Google Scholar
  120. [120]
    Z. S. Shen, S. N. Cao, W. X. Wang, Z. R. Di, H. E. Stanley. Locating the source of diffusion in complex networks by time-reversal backward spreading. Physical Review E, vol. 93, no. 3, Article number 032301, 2016. DOI: 10.1103/PhysRevE.93.032301. DOI: 10.1103/PhysRevE. 93.032301.Google Scholar
  121. [121]
    L. Fu, Z. S. Shen, W. X. Wang, Y. Fan, Z. R. Di. Multisource localization on complex networks with limited observers. Europhysics Letters, vol. 113, no. 1, Article number 18006, 2016. DOI: 10.1209/0295-5075/113/18006.Google Scholar
  122. [122]
    E. Seo, P. Mohapatra, T. Abdelzaher. Identifying rumorsand their sources in social networks. In Proceedings of Volume 8389, Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISRIII, SPIE, Baltimore, USA, 2012. DOI: 10.1117/12.919823.Google Scholar
  123. [123]
    H. S. Wang, P. Zhang, L. Chen, H. Liu, C. Q. Zhang. Online diffusion source detection in social networks. In Proceedings of International Joint Conference on Neural Networks, IEEE, Killarney, Ireland, pp. 1–8, 2015. DOI: 10.1109/IJCNN.2015.7280455.Google Scholar
  124. [124]
    A. Louni, S. Anand, K. P. Subbalakshmi. Identification of source of rumors in social networks with incomplete information. https://doi.org/arxiv.org/abs/1509.00557, 2015.Google Scholar
  125. [125]
    L. Bulteau, S. Fafianie, V. Froese, R. Niedermeier, N. Talmon. The complexity of finding effectors. Theory of Computing Systems, vol. 60, no. 2, pp. 253–279, 2017. DOI: 10.1007/s00224-016-9670-8.MathSciNetMATHGoogle Scholar
  126. [126]
    D. T Nguyen, N. P. Nguyen, M. T. Thai. Sources of misinformation in online social networks: Who to suspect? In Proceedings of IEEE Military Communications Conference, IEEE, Orlando, USA, 2012. DOI: 10.1109/MILCOM. 2012.6415780.Google Scholar
  127. [127]
    S. A. Myers, C. G. Zhu, J. Leskovec. Information diffusion and external influence in networks. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Beijing, China, pp. 33–41, 2012. DOI: 10.1145/2339530.2339540.Google Scholar
  128. [128]
    Q. Y. Zhan, J. W. Zhang, S. Z. Wang, P. S. Yu, J. Y. Xie. Influence maximization across partially aligned heterogenous social networks. In Proceedings of the 19th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Springer, Ho Chi M i n h City, Vietnam, pp. 58–69, 2015. DOI: 10.1007/978-3-319-18038-0—5.Google Scholar
  129. [129]
    D. F. Du, H. Wang, T. Xu, Y. N. Lu, Q. Liu, E. H. Chen. Solving link-oriented tasks in signed network via an embedding approach. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, IEEE, Banff, Canada, pp. 75–80, 2017. DOI: 10.1109/SMC.2017. 8122581.Google Scholar
  130. [130]
    D. X. Wang, P. Cui, W. W. Zhu. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, USA, pp. 1225–1234, 2016. DOI: 10.1145/2939672.2939753.Google Scholar
  131. [131]
    F. Liu, B. Q. Liu, C. J. Sun, M. Liu, X. L. Wang. Deep learning approaches for l i n k prediction in social network services. In Proceedings of the 20th International Conference on Neural Information Processing, Springer, Daegu, Korea, pp. 425432, 2013. DOI: 10.1007/978-3-642-42042-9—53.Google Scholar
  132. [132]
    S. Bourigault, S. Lamprier, P. Gallinari. Learning distributed representations of users for source detection in online social networks. In Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, Riva del Garda, Italy, pp. 265–281, 2016. DOI: 10.1007/978-3-319-46227-1—17.Google Scholar
  133. [133]
    L. Wu, Y. Ge, Q. Liu, E. H. Chen, R. C. Hong, J. P. Du, M. Wang. Modeling the evolution of users’ preferences and social links in social networking services. IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 6, pp. 1240–1253, 2017. DOI: 10.1109/TKDE. 2017.2663422.Google Scholar
  134. [134]
    T. Zhang, R. Z. Qin, Q. L. Dong, W. Gao, H. R. Xu, Z. Y. Hu. Physiognomy: Personality traits prediction by learning. International Journal of Automation and Computing, vol. 14, no. 4, pp. 386–395, 2017. DOI: 10.1007/s11633-017-1085-8.Google Scholar
  135. [135]
    G. W. Ma, Q. Liu, L. Wu, E. H. Chen. Identifying hesitant and interested customers for targeted social marketing. In Proceedings of the 19th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Springer, Ho Chi Minh City, Vietnam, pp. 576–590, 2015. DOI: 10.1007/978-3-319-18038-0—45.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Anhui Province Key Laboratory of Big Data Analysis and Application, School of Computer ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations