Enhancing the Performance of JADE Using Two-phase Parameter Control Scheme and Its Application

  • Qin-Qin FanEmail author
  • Yi-Lian Zhang
  • Xue-Feng Yan
  • Zhi-Huan Wang
Research Article


The search efficiency of differential evolution (DE) algorithm is greatly impacted by its control parameters. Although many adaptation/self-adaptation techniques can automatically find suitable control parameters for the DE, most techniques are based on population information which may be misleading in solving complex optimization problems. Therefore, a self-adaptive DE (i.e., JADE) using two-phase parameter control scheme (TPC-JADE) is proposed to enhance the performance of DE in the current study. In the TPCJADE, an adaptation technique is utilized to generate the control parameters in the early population evolution, and a well-known empirical guideline is used to update the control parameters in the later evolution stages. The TPC-JADE is compared with four state-of-theart DE variants on two famous test suites (i.e., IEEE CEC2005 and IEEE CEC2015). Results indicate that the overall performance of the TPC-JADE is better than that of the other compared algorithms. In addition, the proposed algorithm is utilized to obtain optimal nutrient and inducer feeding for the Lee-Ramirez bioreactor. Experimental results show that the TPC-JADE can perform well on an actual dynamic optimization problem.


Differential evolution (DE) algorithm evolutionary computation dynamic optimization control parameter adaptation chemical processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Natural Science Foundation of China (Nos. 61603244 and 41505001) and Fundamental Research Funds for the Central Universities (No. 222201717006).


  1. [1]
    R. Storn, K. Price. Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Berkeley, USA: ICSI, 1995.zbMATHGoogle Scholar
  2. [2]
    F. Neri, V. Tirronen. Recent advances in differential evolution: A survey and experimental analysis. Artificial Intelligence Review, vol. 33, no. 1–2, pp. 61–106, 2010. DOI: 10.1007/s10462-009-9137-2.CrossRefGoogle Scholar
  3. [3]
    S. Das, P. N. Suganthan. Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 4–31, 2011. DOI: 10.1109/TEVC.2010.2059031.CrossRefGoogle Scholar
  4. [4]
    R. Gämperle, S. D. Müller, P. Koumoutsakos. A parameter study for differential evolution. In Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, Interlaken, Switzerland: WSEAS Press, pp. 293–298, 2002.Google Scholar
  5. [5]
    R. Storn, K. Price. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. DOI: 10.1023/A:1008202821328.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    J. Ronkkonen, S. Kukkonen, K. V. Price. Real-parameter optimization with differential evolution. In Proceedings of IEEE Congress on Evolutionary Computation, IEEE, Edinburgh, Scotland, pp. 506–513, 2005. DOI: 10.1109/CEC. 2005.1554725.Google Scholar
  7. [7]
    A. K. Qin, V. L. Huang, P. N. Suganthan. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation, vol. 13, no. 2, pp. 398–417, 2009. DOI: 10.1109/TEVC.2008.927706.CrossRefGoogle Scholar
  8. [8]
    J. Liu, J. Lampinen. A fuzzy adaptive differential evolution algorithm. Soft Computing, vol. 9, no. 6, pp. 448–462, 2005. DOI: 10.1007/s00500-004-0363-x.zbMATHCrossRefGoogle Scholar
  9. [9]
    J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006. DOI: 10.1109/TEVC.2006.872133.CrossRefGoogle Scholar
  10. [10]
    J. Q. Zhang, A. C. Sanderson. JADE: Adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009. DOI: 10.1109/TEVC.2009.2014613.CrossRefGoogle Scholar
  11. [11]
    R. Mallipeddi, P. N. Suganthan, Q. K. Pan, M. F. Tasgetiren. Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing, vol. 11, no. 2, pp. 1679–1696, 2011. DOI: 10.1016/j. asoc.2010.04.024.CrossRefGoogle Scholar
  12. [12]
    Y. Wang, Z. X. Cai, Q. F. Zhang. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 55–66, 2011. DOI: 10.1109/TEVC.2010.2087271.CrossRefGoogle Scholar
  13. [13]
    Y. Wang, H. X. Li, T. W. Huang, L. Li. Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Applied Soft Computing, vol. 18, pp. 232–247, 2014. DOI: 10.1016/j.asoc.2014.01.038.CrossRefGoogle Scholar
  14. [14]
    Q. Q. Fan, X. F. Yan. Differential evolution algorithm with self-adaptive strategy and control parameters for Pxylene oxidation process optimization. Soft Computing, vol. 19, no. 5, pp. 1363–1391, 2015. DOI: 10.1007/s00500-014-1349-y.CrossRefGoogle Scholar
  15. [15]
    Q. Q. Fan, X. F. Yan. Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies. IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 219–232, 2016. DOI: 10.1109/TCYB.2015.2399478.CrossRefGoogle Scholar
  16. [16]
    R. A. Sarker, S. M. Elsayed, T. Ray. Differential evolution with dynamic parameters selection for optimization problems. IEEE Transactions on Evolutionary Computation, vol. 18, no. 5, pp. 689–707, 2014. DOI: 10.1109/TEVC.2013. 2281528.CrossRefGoogle Scholar
  17. [17]
    S. Rahnamayan, H. R. Tizhoosh, M. M. A. Salama. Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 64–79, 2008. DOI: 10.1109/TEVC.2007.894200.CrossRefGoogle Scholar
  18. [18]
    W. Y. Gong, Z. H. Cai, Y. Wang. Repairing the crossover rate in adaptive differential evolution. Applied Soft Computing, vol. 15, pp. 149–168, 2014. DOI: 10.1016/j.asoc.2013. 11.005.CrossRefGoogle Scholar
  19. [19]
    W. Y. Gong, Z. H. Cai, D. W. Liang. Adaptive ranking mutation operator based differential evolution for constrained optimization. IEEE Transactions of Cybernetics, vol. 45, no. 4, pp. 716–727, 2015. DOI: 10.1109/TCYB.2014. 2334692.CrossRefGoogle Scholar
  20. [20]
    M. Yang, C. H. Li, Z. H. Cai, J. Guan. Differential evolution with auto-enhanced population diversity. IEEE Transactions ofCybernetics, vol. 45, no. 2, pp. 302–315, 2015. DOI: 10.1109/TCYB.2014.2339495.CrossRefGoogle Scholar
  21. [21]
    Q. Q. Fan, X. F. Yan, Y. L. Zhang. Auto-selection mechanism of differential evolution algorithm variants and its application. European Journal of Operational Research, to be published. DOI: 10.1016/j.ejor.2017.10.013.Google Scholar
  22. [22]
    S. M. Guo, C. C. Yang. Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Transactions on Evolutionary Computation, vol. 19, no. 1, pp. 31–49, 2015. DOI: 10.1109/TEVC.2013.2297160.MathSciNetCrossRefGoogle Scholar
  23. [23]
    J. H. Zhong, M. E. Shen, J. Zhang, H. S. H. Chung, Y. H. Shi, Y. Li. A differential evolution algorithm with dual populations for solving periodic railway timetable scheduling problem. IEEE Transactions on Evolutionary Computation, vol. 17, no. 4, pp. 512–527, 2013. DOI: 10.1109/TEVC. 2012.2206394.CrossRefGoogle Scholar
  24. [24]
    S. Biswas, S. Kundu, S. Das. Inducing niching behavior in differential evolution through local information sharing. IEEE Transactions on Evolutionary Computation, vol. 19, no. 2, pp. 246–263, 2015. DOI: 10.1109/TEVC.2014.2313659.CrossRefGoogle Scholar
  25. [25]
    R. Tanabe, A. S. Fukunaga. Improving the search performance of SHADE using linear population size reduction. In Proceedings of IEEE Congress on Evolutionary Computation, IEEE, Beijing, China, pp. 1658–1665, 2014. DOI: 10.1109/CEC.2014.6900380.Google Scholar
  26. [26]
    Y. L. Li, Z. H. Zhan, Y. J. Gong, W. N. Chen, J. Zhang, Y. Li. Differential evolution with an evolution path: A deep evolutionary algorithm. IEEE Transactions of Cybernetics, vol. 45, no. 9, pp. 1798–1810, 2015. DOI: 10.1109/TCYB. 2014.2360752.CrossRefGoogle Scholar
  27. [27]
    S. M. Guo, C. C. Yang, P. H. Hsu, J. S. H. Tsai. Improving differential evolution with a successful-parent-selecting framework. IEEE Transactions on Evolutionary Computation, vol. 19, no. 5, pp. 717–730, 2015. DOI: 10.1109/TEVC.2014.2375933.CrossRefGoogle Scholar
  28. [28]
    H. Lu, J. Yin, Y. X. Yuan, J. H. Wang, Y. Z. Lin, X. L. Wang. Energy consumption analysis of sludge transport pipeline system based on GA-DE hybrid algorithm. Journal of Chemical Engineering of Japan, vol. 47, no. 8, pp. 621–627, 2014. DOI: 10.1252/jcej.13we233.CrossRefGoogle Scholar
  29. [29]
    X. H. Qiu, Y. T. Hu, B. Li. Sequential fault diagnosis using an inertial velocity differential evolution algorithm. International Journal of Automation and Computing, Online First. DOI: 10.1007/s11633-016-1008-0.Google Scholar
  30. [30]
    G. H. Lin, J. Zhang, Z. H. Liu. Hybrid particle swarm optimization with differential evolution for numerical and engineering optimization. International Journal of Automation and Computing, vol. 15, no. 1, pp. 103–114, 2018. DOI: 10.1007/s11633-016-0990-6.CrossRefGoogle Scholar
  31. [31]
    H. T. Ye, Z. Q. Li. PID neural network decoupling control based on hybrid particle swarm optimization and differential evolution. International Journal of Automation and Computing, Online First. DOI: 10.1007/s11633-015-0917-7.Google Scholar
  32. [32]
    Q. Q. Fan, X. F. Yan, Y. Xue. Prior knowledge guided differential evolution. Soft Computing, vol. 21, no. 22, pp. 6841–6858, 2017. DOI: 10.1007/s00500-016-2235-6.CrossRefGoogle Scholar
  33. [33]
    P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger, S. Tiwari. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, KanGAL Report 2005005, Nanyang Technological University, Singapore, 2005.Google Scholar
  34. [34]
    J. J. Liang, B. Y. Qu, P. N. Suganthan, Q. Chen. Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-based Real-parameter Single Objective Optimization, Technical Report 201411A, Computational Intelligence Laboratory, Zhengzhou University, China, 2014.Google Scholar
  35. [35]
    J. R. Banga, E. Balsa-Canto, C. G. Moles, A. A. Alonso. Dynamic optimization of bioprocesses: Efficient and robust numerical strategies. Journal of Biotechnology, vol. 117, no. 4, pp. 407–419, 2005. DOI: 10.1016/j.jbiotec. 2005.02.013.CrossRefGoogle Scholar
  36. [36]
    B. Srinivasan, S. Palanki, D. Bonvin. Dynamic optimization of batch processes: I. Characterization of the nominal solution. Computers & Chemica. Engineering, vol. 27, no. 1, pp. 1–26, 2003. DOI: 10.1016/S0098-1354(02)00116-3.Google Scholar
  37. [37]
    R. Bellman. Dynamic programming and Lagrange multipliers. Proceedings of the National Academy of Sciences of the United States of America, vol. 42, no. 10, pp. 767–769, 1956. DOI: 10.1073/pnas.42.10.767.MathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    R. Luus. On the application of iterative dynamic programming to singular optimal control problems. IEEE Transactions on Automatic Control, vol. 37, no. 11, pp. 1802–1806, 1992. DOI: 10.1109/9.173155.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    W. H. Ray, J. Szekely. Process Optimization with Applications in Metallurgy and Chemical Engineering, New York, USA: John Wiley & Sons, 1973.Google Scholar
  40. [40]
    A. E. Bryson. Dynamic Optimization, Menlo Park, USA: Addison Wesley Longman, 1999.Google Scholar
  41. [41]
    D. Sarkar, J. M. Modak. Optimisation of fed-batch bioreactors using genetic algorithms. Chemical Engineering Science, vol. 58, no. 11, pp. 2283–2296, 2003. DOI: 10.1016/S0009-2509(03)00095-2.CrossRefGoogle Scholar
  42. [42]
    R. W. H. Sargent, G. R. Sullivan. The development of an efficient optimal control package. In Proceedings of the 8th IFIP Conference on Optimization Techniques, Springer, Wurzburg, Germany, pp. 158–168, 1978. DOI: 10.1007/BFb0006520.CrossRefGoogle Scholar
  43. [43]
    K. V. Price, R. M. Storn, J. A. Lampinen. Differential Evolution: A Practical Approach to Global Optimization, Berlin, Germany: Springer Heidelberg, 2005. DOI: 10.1007/3-540-31306-0.zbMATHGoogle Scholar
  44. [44]
    S. Das, A. Konar, U. K. Chakraborty. Two improved differential evolution schemes for faster global search. In Proceedings of the Conference on Genetic and Evolutionary Computation, ACM, Washington DC, USA, pp. 991–998, 2005. DOI: 10.1145/1068009.1068177.Google Scholar
  45. [45]
    J. Montgomery, S. Chen. An analysis of the operation of differential evolution at high and low crossover rates. In Proceedings of IEEE Congress on Evolutionary Computation, IEEE, Barcelona, Spain, 2010. DOI: 10.1109/CEC. 2010.5586128.Google Scholar
  46. [46]
    F. Wilcoxon. Individual comparisons by ranking methods. Biometric. Bulletin, vol. 1, no. 6, pp. 80–83, 1945. DOI: 10.2307/3001968.Google Scholar
  47. [47]
    M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. AJournal of the American Statistical ssociation, vol. 32, no. 200, pp. 675–701, 1937. DOI: 10.2307/2279372.zbMATHCrossRefGoogle Scholar
  48. [48]
    J. A. Roubos, C. D. D. Gooijer, G. Van Straten, A. J. B. Van Boxtel. Comparison of optimization methods for fedbatch cultures of hybridoma cells. Bioprocess Engineering, vol. 17, no. 2, pp. 99–102, 1997. DOI: 10.1007/s004490050360.CrossRefGoogle Scholar
  49. [49]
    J. Lee, W. F. Ramirez. Optimal fed-?batch control of induced foreign protein production by recombinant bacteria. AIChE Journal, vol. 40, no. 5, pp. 899–907, 1994. DOI: 10.1002/aic.690400516.CrossRefGoogle Scholar
  50. [50]
    Q. Q. Fan, Z. M. Lu, X. F. Yan, M. J. Guo. Chemical process dynamic optimization based on hybrid differential evolution algorithm integrated with Alopex. Journal of Central South University, vol. 20, no. 4, pp. 950–959, 2013. DOI: 10.1007/s11771-013-1570-3.CrossRefGoogle Scholar
  51. [51]
    J. A. Roubos, G. Va. Straten, A. J. B. Van Boxtel. An evolutionary strategy for fed-batch bioreactor optimization; concepts and performance. Journal of Biotechnology, vol. 67, no. 2–3, pp. 173–187, 1999. DOI: 10.1016/S0168-1656(98)00174-6.CrossRefGoogle Scholar
  52. [52]
    D. Sarkar, J. M. Modak. ANNSA: A hybrid artificial neural network/simulated annealing algorithm for optimal control problems. Chemical Engineerin Science, vol. 58, no. 14, pp. 3131–3142, 2003. DOI: 10.1016/S0009-2509(03)00168-4.CrossRefGoogle Scholar
  53. [53]
    B. Zhang, D. Z. Chen, W. X. Zhao. Iterative ant-colony algorithm and its application to dynamic optimization of chemical process. Computers & Chemical Engineering, vol. 29, no. 10, pp. 2078–2086, 2005. DOI: 10.1016/j.compchemeng. 2005.05.020.CrossRefGoogle Scholar
  54. [54]
    Q. Q. Fan, X. H. Wang, X. F. Yan. Harmony search algorithm with differential evolution based control parameter co-evolution and its application in chemical process dynamic optimization. Journal of Central South University, vol. 22, no. 6, pp. 2227–2237, 2015. DOI: 10.1007/s11771-015-2747-8.CrossRefGoogle Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Logistics Research CenterShanghai Maritime UniversityShanghaiChina
  2. 2.Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of EducationEast China University of Science and TechnologyShanghaiChina
  3. 3.Key Laboratory of Marine Technology and Control Engineering Ministry of CommunicationsShanghai Maritime UniversityShanghaiChina

Personalised recommendations