State Estimation Using Non-uniform and Delayed Information: A Review

  • Jhon A. IsazaEmail author
  • Hector A. Botero
  • Hernan Alvarez


The study and application of methods for incorporating nonuniform and delayed information in state estimation techniques are important topics to advance in soft sensor development.Therefore, this paper presents a review of these methods and proposes a taxonomy that allows a faster selection of state estimator in this type of applications. The classification is performed according to the type of estimator, method, and used tool. Finally, using the proposed taxonomy, some applications reported in the literature are described.


State estimation asynchronism delayed measurement non-uniform information taxonomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. L. Walcott, M. J. Corless, S. H. Zak. Comparative study of non-linear state-observation techniques. International Journal of Control, vol. 45, no. 6, pp. 2109–2132, 1987. DOI: 10.1080/00207178708933870.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    D. Dochain. State and parameter estimation in chemical and biochemical processes: A tutorial. Journal of Process Control, vol. 13, no. 8, pp. 801–818, 2003. DOI: 10.1016/S0959-1524(03)00026-X.MathSciNetCrossRefGoogle Scholar
  3. [3]
    [3]B. Bequette. Behavior of a CSTR with a recirculating jacket heat transfer system. In Proceedings of the American Control Conference, IEEE, Anchorage, USA, vol. 4, pp. 3275–3280, 2002.Google Scholar
  4. [4]
    J. Mohd Ali, N. Ha Hoang, M. A. Hussain, D. Dochain. Review and classification of recent observers applied in chemical process systems. Computers & Chemical Engineering, vol. 76, pp. 27–41, 2015. DOI: 10.1016/j.compchemeng.2015.01.019.CrossRefGoogle Scholar
  5. [5]
    H. H. Afshari, S. A. Gadsden, S. Habibi. Gaussian filters for parameter and state estimation: A general review of theory and recent trends. Signal Processing, vol. 135, pp. 218–238, 2017. DOI: 10.1016/j.sigpro.2017.01.001.CrossRefGoogle Scholar
  6. [6]
    S. L. Sun, H. L. Lin, J. Ma, X. Y. Li. Multi-sensor distributed fusion estimation with applications in networked systems: A review paper. Information Fusion, vol. 38, pp. 122–134, 2017. DOI: 10.1016/j.inffus.2017.03.006.CrossRefGoogle Scholar
  7. [7]
    A. Gopalakrishnan, N. S. Kaisare, S. Narasimhan. Incorporating delayed and infrequent measurements in extended Kalman filter based nonlinear state estimation. Journal of Process Control, vol. 21, no. 1, pp. 119–129, 2011. DOI: 10.1016/j.jprocont.2010.10.013.CrossRefGoogle Scholar
  8. [8]
    Y. F. Guo, B. Huang. State estimation incorporating infrequent, delayed and integral measurements. Automatica, vol. 58, pp. 32–38, 2015. DOI: 10.1016/j.automatica. 2015.05.001.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Y. F. Guo, Y. Zhao, B. Huang. Development of soft sensor by incorporating the delayed infrequent and irregular measurements. Journal of Process Control, vol. 24, no. 11, pp. 1733–1739, 2014. DOI: 10.1016/j.jprocont.2014. 09.006.CrossRefGoogle Scholar
  10. [10]
    S. C. Patwardhan, S. Narasimhan, P. Jagadeesan, B. Gopaluni, S. L. Shah. Nonlinear Bayesian state estimation: A review of recent developments. Control Engineering Practice, vol. 20, no. 10, pp. 933–953, 2012. DOI: 10.1016/j. conengprac.2012.04.003.CrossRefGoogle Scholar
  11. [11]
    I. Peñarrocha, R. Sanchis, J. A. Romero. State estimator for multisensor systems with irregular sampling and time-varying delays. International Journal of Systems Science, vol. 43, no. 8, pp. 1441–1453, 2012. DOI: 10.1080/00207721. 2011.625482.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    W. Wang, X H Huang, M. Wang. Survey of sequence measurement filtering algorithm. Control and Decision, vol. 27, no. 1, pp. 1–7, 2012. (in Chinese)MathSciNetGoogle Scholar
  13. [13]
    H. P. Wang, Y. Tian, C. Vasseur. Piecewise continuous hybrid systems based observer design for linear systems with variable sampling periods and delay output. Signal Processing, vol. 114, pp. 75–84, 2015. DOI: 10.1016/j.sigpro. 2015.01.009.CrossRefGoogle Scholar
  14. [14]
    A. Khosravian, J. Trumpf, R. Mahony, T. Hamel. Recursive attitude estimation in the presence of multi-rate and multi-delay vector measurements. In Proceedings of the American Control Conference, IEEE, Chicago, USA, pp. 3199–3205, 2015.Google Scholar
  15. [15]
    A. Khosravian, J. Trumpf, R. Mahony. State estimation for nonlinear systems with delayed output measurements. In Proceedings of the 54th Annual Conference on Decision and Control, IEEE, Osaka, Japan, pp. 6330–6335, 2015.Google Scholar
  16. [16]
    J. Zeng, J. F. Liu. Distributed moving horizon state estimation: Simultaneously handling communication delays and data losses. Systems & Control Letters, vol. 75, pp. 56–68, 2015. DOI: 10.1016/j.sysconle.2014.11.007.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Tatiraju, M. Soroush, B. A. Ogunnaike. Multirate non-linear state estimation with application to a polymerization reactor. AIChE Journal, vol. 45, no. 4, pp. 769–780, 1998.CrossRefGoogle Scholar
  18. [18]
    N. Kazantzis, R. A. Wright. Nonlinear observer design in the presence of delayed output measurements. Systems & Control Letters, vol. 54, no. 9, pp. 877–886, 2005. DOI: 10.1016/j.sysconle.2004.12.005.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Y. L. Dong, W. J. Liu, S. K. Zuo. Observer design for nonlinear systems with interval time-varying delay. WSEAS Transactions on Systems and Control, vol. 9, pp. 614–622, 2014.Google Scholar
  20. [20]
    Q. P. Ha, N. D. That, P. T. Nam, H. Trinh. Partial state estimation for linear systems with output and input time delays. ISA Transactions, vol. 53, no. 2, pp. 327–334, 2014. DOI: 10.1016/j.isatra.2013.12.025.CrossRefGoogle Scholar
  21. [21]
    J. A. Isaza, J. E. Rendón, J. P. Viana, H. A. Botero. Non-linear state estimation for batch process with delayed measurements. In Proceedings of XVII Latin American Conference in Automatic Control, pp. 95–100, 2016.Google Scholar
  22. [22]
    J. A. Isaza, J. D. Sánchez, E. Jiénez-Rodríguez, H. A. Botero. A soft sensor for biomass in a batch process with delayed measurements. In Proceedings of XVII Latin American Conference in Automatic Control, pp. 334–339, 2016.Google Scholar
  23. [23]
    L. Q. Zhao, J. L. Wang, T. Yu, K. Y. Chen, T. J. Liu. Nonlinear state estimation for fermentation process using cubature Kalman filter to incorporate delayed measurements. Chinese Journal of Chemical Engineering, vol. 23, no. 11, pp. 1801–1810, 2015. DOI: 10.1016/j.cjche.2015. 09.005.CrossRefGoogle Scholar
  24. [24]
    D. Nada, M. Bousbia-Salah, M. Bettayeb. Multi-sensor data fusion for wheelchair position estimation with unscented Kalman Filter. International Journal of Automation and Computing, Oline First. DOI: 10.1007/s11633-017-1065-z.Google Scholar
  25. [25]
    H. L. Alexander. State estimation for distributed systems with sensing delay. In Proceedings of the SPIE Conference on Data Structures and Target Classification, SPIE, Orlando, USA, pp. 103–111, 1991.CrossRefGoogle Scholar
  26. [26]
    T. D. Larsen, N. A. Andersen, O. Ravn, N. K. Poulsen. Incorporation of time delayed measurements in a discrete-time kalman filter. In Proceedings of the 37th IEEE Conference on Decision and Control, IEEE, Tampa, USA, vol. 4, pp. 3972–3977, 1998.Google Scholar
  27. [27]
    B. D. O. Anderson, J. B. Moore. Optimal Filtering (Dover Books on Electrical Engineering), New York, USA: Dover Publications, 2012.zbMATHGoogle Scholar
  28. [28]
    D. Simon. Optimal State Estimation, Hoboken, USA: John Wiley & Sons, Inc., 2006.CrossRefGoogle Scholar
  29. [29]
    G. L. Zhao, J. C. Wang. Reset observers for linear time-varying delay systems: Delay-dependent approach. Journal of the Franklin Institute, vol. 351, no. 11, pp. 5133–5147, 2014. DOI: 10.1016/j.jfranklin.2014.08.011.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A. Khosravian, J. Trumpf, R. Mahony, T. Hamel. State estimation for invariant systems on lie groups with delayed output measurements. Automatica, vol. 68, pp. 254–265, 2015. DOI: 10.1016/j.automatica.2016.01.024.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Z. Hidayat, R. Babuska, B. De Schutter, A. Núñez. Observers for linear distributed-parameter systems: A survey. In Proceedings of IEEE International Symposium on Robotic and Sensors Environments, IEEE, Montreal, USA, pp. 166–171, 2011.Google Scholar
  32. [32]
    J. Zhang, J. F. Liu. Observer enhanced distributed moving horizon state estimation subject to communication delays. Journal of Process Control, vol. 24, no. 5, pp. 672–686, 2014. DOI: 10.1016/j.jprocont.2014.03.012.Google Scholar
  33. [33]
    W. Y. Leong, H. Trinh, T. Fernando.Design of distributed functional observers for interconnected time-delay systems. In Proceedings of the 8th IEEE International Conference on Industrial and Information Systems, IEEE, Peradeniya, Sri Lanka, pp. 191–196, 2013.Google Scholar
  34. [34]
    V. Prasad, M. Schley, L. P. Russo, B. Wayne Bequette. Product property and production rate control of styrene polymerization. Journal of Process Control, vol. 12, no. 3, pp. 353–372, 2002. DOI: 10.1016/S0959-1524(01)00044-0.CrossRefGoogle Scholar
  35. [35]
    [35] R. van der Merwe, E. Wan. Sigma-point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models, Technical Report, OHSU Digital Commons, Oregon Health &Science University, USA, 2004.Google Scholar
  36. [36]
    O. J. M. Smith. A controller to overcome dead time. ISA Journal, vol. 6, no. 2, pp. 28–33, 1959.Google Scholar
  37. [37]
    K. R. Krishnan, I. M. Horowitz. Synthesis of a non-linear feedback system with significant plant-ignorance for prescribed system tolerances. International Journal of Control, vol. 19, no. 4, pp. 689–706, 1974. DOI: 10.1080/ 00207177408932666.CrossRefzbMATHGoogle Scholar
  38. [38]
    K. V. Ling, K. W. Lim. Receding horizon recursive state estimation. IEEE Transactions on Automatic Control, vol. 44, no. 9, pp. 1750–1753, 1999. DOI: 10.1109/9.788546.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    V. Comparison of adaptive kalman filter methods in state estimation of a nonlinear system using asynchronous measurements. In Proceedings of World Congress on Engineering and Computer Science, San Francisco, USA, vol. 2, pp. 20–22, 2009.Google Scholar
  40. [40]
    R. López-Negrete, L. T. Biegler. A moving horizon estimator for processes with multi-rate measurements: A non-linear programming sensitivity approach. Journal of Process Control, vol. 22, no. 4, pp. 677–688, 2012. DOI: 10.1016/ j.jprocont.2012.01.013.CrossRefGoogle Scholar
  41. [41]
    M. S. Mahmoud, M. F. Emzir. State estimation with asynchronous multi-rate multi-smart sensors. Information Sciences, vol. 196, pp. 15–27, 2012. DOI: 10.1016/j.ins. 2012.01.034.CrossRefGoogle Scholar
  42. [42]
    L. P. Yan, B. Xiao, Y. Q. Xia, M. Y. Fu. State estimation for asynchronous multirate multisensor nonlinear dynamic systems with missing measurements. International Journal of Adaptive Control and Signal Processing, vol. 26, no. 6, pp. 516–529, 2012. DOI: 10.1002/acs.2266.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    L. P. Yan, D. H. Zhou, M. Y. Fu, Y. Q. Xia. State estimation for asynchronous multirate multisensor dynamic systems with missing measurements. IET Signal Processing, vol. 4, no. 6, pp. 728–739, 2010. DOI: 10.1049/iet-spr.2009. 0215.MathSciNetCrossRefGoogle Scholar
  44. [44]
    L. Ji, J. B. Rawlings. Application of MHE to large-scale nonlinear processes with delayed lab measurements. Computers & Chemical Engineering, vol. 80, pp. 63–72, 2015. DOI: 10.1016/j.compchemeng.2015.04.015.CrossRefGoogle Scholar
  45. [45]
    Y. Wu, X. L. Luo. A novel calibration approach of soft sensor based on multirate data fusion technology. Journal of Process Control, vol. 20, no. 10, pp. 1252–1260, 2010. DOI: 10.1016/j.jprocont.2010.09.003.CrossRefGoogle Scholar
  46. [46]
    M. Moayedi, Y. K. Foo, Y. C. Soh. Filtering for networked control systems with single/multiple measurement packets subject to multiple-step measurement delays and multiple packet dropouts. International Journal of Systems Science, vol. 42, no. 3, pp. 335–348, 2011. DOI: 10.1080/00207720903513335.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    F. Cacace, F. Conte, A. Germani. Filtering continuous-time linear systems with time-varying measurement delay. IEEE Transactions on Automatic Control, vol. 60, no. 5, pp. 1368–1373, 2015. DOI: 10.1109/TAC.2014. 2357138.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    A. L. Juloski, W. P. M. H. Heemels, Y. Boers, F. Verschure. Two approaches to state estimation for a class of piecewise affine systems. In Proceedings of the 42nd IEEE Conference on Decision and Control, IEEE, Maui, USA, vol. 1, pp. 143–148, 2003.Google Scholar
  49. [49]
    A. Germani, C. Manes, P. Pepe. A new approach to state observation of nonlinear systems with delayed output. IEEE Transactions on Automatic Control, vol. 47, no. 1, pp. 96–101, 2002. DOI: 10.1109/9.981726.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    S. Lee. Observer for discrete-time Lipschitz non-linear systems with delayed output. IET Control Theory & Applications, vol. 5, no. 1, pp. 54–62, 2011. DOI: 10.1049/iet-cta.2009.0400.MathSciNetCrossRefGoogle Scholar
  51. [51]
    F. Cacace, A. Germani, C. Manes. A chain observer for nonlinear systems with multiple time-varying measurement delays. SIAM Journal on Control and Optimization, vol. 52, no. 3, pp. 1862–1885, 2014. DOI: 10.1137/ 120876472.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    D. M. de la Pena, P. D. Christofides. Lyapunov-based model predictive control of nonlinear systems subject to data losses. IEEE Transactions on Automatic Control, vol. 53, no. 9, pp. 2076–2089, 2008. DOI: 10.1109/TAC.2008.929401.MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    S. X. Jing, T. H. Pan, Z. M. Li. Recursive Bayesian algorithm for identification of systems with non-uniformly sampled input data. International Journal of Automation and Computing, Online First. DOI: 10.1007/s11633-017-1073-z.Google Scholar
  54. [54]
    P. Niamsup, V. N. Phat. Robust finite-time H control of linear time-varying delay systems with bounded control via Riccati equations. International Journal of Automation and Computing, Online First. DOI: 10.1007/s11633-016-1018-y.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad Nacional de Colombia, Research group on dynamic processes - Kalman GroupMedellinColombia

Personalised recommendations