A Position and Torque Switching Control Method for Robot Collision Safety

  • Zhi-Jing Li
  • Hai-Bin Wu
  • Jian-Ming Yang
  • Ming-Hao Wang
  • Jin-Hua YeEmail author
Research Article


With the increasing number of human-robot interaction applications, robot control characteristics and their effects on safety as well as performance should be taken account into the robot control system. In this paper, a position and torque switching control method was proposed to improve the robot safety and performance, when robots and humans work in the same space. The switching control method includes two modes, the position control mode using a proportion-integral (PI) algorithm, and the torque control mode using sliding mode control (SMC) algorithm for eliminating swing. Under the normal condition, the robot works in position control mode for trajectory tracking with quick response. Once the robot and human collide, the robot will switch to torque control mode immediately, and the impact force will be restricted within a safe range. When the robot and human detach, the robot will resume to position control mode automatically. Moreover, for a better performance, the joint torque is detected from direct-current (DC) motor’s current rather than the torque sensor. The experiment results show that the proposed approach is effective and feasible.


Human-robot interaction position control torque control switching control robot collision safety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank the reviewers for their careful review and constructive suggestions and the work of editors. Thanks also for the help of the team members.


  1. [1]
    A. Pervez, J. Ryu. Safe physical human robot interaction-past, present and future. Journal of Mechanical Science and Technology, vol. 22, no. 3, pp. 469–483, 2008. DOI: 10.1007/s12206-007-1109-3.CrossRefGoogle Scholar
  2. [2]
    A. De Santis, B. Siciliano, A. De Luca, A. Bicchi. An atlas of physical human-robot interaction. Mechanism and Machine Theory, vol. 43, no. 3, pp. 253–270, 2008. DOI: 10.1016/j.mechmachtheory.2007.03.003.CrossRefzbMATHGoogle Scholar
  3. [3]
    T. S. Tadele, T. De Vries, S. Stramigioli. The safety of domestic robotics: A survey of various safety-related publications. IEEE Robotics & Automation Magazine, vol. 21, no. 3, pp. 134–142, 2014. DOI: 10.1109/MRA.2014.2310151.CrossRefGoogle Scholar
  4. [4]
    S. Haddadin, A. Albu-Schaffer, O. Eiberger, G. Hirzinger. New insights concerning intrinsic joint elasticity for safety. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System, IEEE, Taipei, Taiwan, China, pp. 2181–2187, 2010.Google Scholar
  5. [5]
    M. Zinn, O. Khatib, B. Roth, J. K. Salisbury. Playing it safe. IEEE Robotics & Automation Magazine, vol. 11, no. 2, pp. 12–21, 2004. DOI: 10.1109/MRA.2004.1310938.CrossRefGoogle Scholar
  6. [6]
    M. H. Zaher, S. M. Megahed. Joints flexibility effect on the dynamic performance of robots. Robotica, vol. 33, no. 7, pp. 1424–1445, 2015. DOI: 10.1017/S0263574714000848.CrossRefGoogle Scholar
  7. [7]
    K. C. D. Fu, Y. Nakamura, T. Yamamoto, H. Ishiguro. Analysis of motor synergies utilization for optimal movement generation for a human-like robotic arm. International Journal of Automation and Computing, vol. 10, no. 6, pp. 515–524, 2013. DOI: 10.1007/s11633-013-0749-2.CrossRefGoogle Scholar
  8. [8]
    Y. C. Huang, J. Li, Q. Huang, P. Soueres. Anthropomorphic robotic arm with integrated elastic joints for TCM remedial massage. Robotica, vol. 33, no. 2, pp. 348–365, 2015. DOI: 10.1017/S0263574714000228.CrossRefGoogle Scholar
  9. [9]
    A. Albu-Schaffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimbock, G. Hirzinger. The DLR lightweight robot: Design and control concepts for robots in human environments. Industrial Robot, vol. 34, no. 5, pp. 376–385, 2007. DOI: 10.1108/01439910710774386.CrossRefGoogle Scholar
  10. [10]
    A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, P. Fraisse. Collaborative manufacturing with physical human-robot interaction. Robotics and Computer-Integrated Manufacturing, vol. 40, pp. 1–13, 2016. DOI: 10. 1016/j.rcim.2015.12.007.CrossRefGoogle Scholar
  11. [11]
    J. A. Marvel, J. Falco, I. Marstio. Characterizing task-based human-robot collaboration safety in manufacturing. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 45, no. 2, pp. 260–275, 2015. DOI: 10. 1109/TSMC.2014.2337275.CrossRefGoogle Scholar
  12. [12]
    M. Beetz, G. Bartels, A. Albu-Schaffer. Robotic agents capable of natural and safe physical interaction with human co-workers. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Hamburg, Germany, pp. 6528–6535, 2015.Google Scholar
  13. [13]
    A. De Luca, A. Albu-Schaffer, S. Haddadin, G Hirzinger. Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Beijing, China, pp. 1623–1630, 2006.Google Scholar
  14. [14]
    B. Schmidt, L. H. Wang. Depth camera based collision avoidance via active robot control. Journal of Manufacturing Systems, vol. 33, no. 4, pp. 711–718, 2015. DOI: 10.1016/j.jmsy.2014.04.004.CrossRefGoogle Scholar
  15. [15]
    F. Flacco, T. Kroeger, A. De Luca, O. Khatib. A depth space approach for evaluating distance to objects. Journal of Intelligent & Robotic Systems, vol. 80, no. S1, pp. 7–22, 2015. DOI: 10.1007/s10846-014-0146-2.CrossRefGoogle Scholar
  16. [16]
    V. J. Lumelsky, E. Cheung. Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators. IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 1, pp. 194–203, 1993. DOI: 10.1109/21.214777.CrossRefGoogle Scholar
  17. [17]
    D. Gandhi, E. Cervera. Sensor covering of a robot arm for collision avoidance. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, IEEE, Taipei, Taiwan, China, vol. 5, pp. 4951–4955, 2003.Google Scholar
  18. [18]
    T. L. Lam, H. W. Yip, H. H. Qian, Y. S. Xu. Collision avoidance of industrial robot arms using an invisible sensitive skin. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Vilamoura, Algarve, Portugal, pp. 4542–4543, 2012.Google Scholar
  19. [19]
    D. Kulic, E. Croft. Real-time safety for human-robot interaction. In Proceedings of the 12th International Conference on Advanced Robotics, IEEE, Seattle, USA, pp. 719–724, 2005.Google Scholar
  20. [20]
    D. Kulic, E. Croft. Pre-collision safety strategies for human-robot interaction. Autonomous Robots, vol. 22, no. 2, pp. 149–164, 2007. DOI: 10.1007/s10514-006-9009-4.CrossRefGoogle Scholar
  21. [21]
    D. Hyun, H. S. Yang, J. Park, Y. Shim. Variable stiffness mechanism for human-friendly robots. Mechanism and Machine Theory, vol. 45, no. 6, pp. 880–897, 2010. DOI: 10.1016/j.mechmachtheory.2010.01.001.CrossRefzbMATHGoogle Scholar
  22. [22]
    K. Kong, J. Bae, M. Tomizuka. A compact rotary series elastic actuator for human assistive systems. IEEE/ASME Transactions on Mechatronics, vol. 17, no. 2, pp. 288–297, 2012. DOI: 10.1109/TMECH.2010.2100046.CrossRefGoogle Scholar
  23. [23]
    S. Wolf, G. Grioli, O. Eiberger, W. Friedl, M. Grebenstein. Variable stiffness actuators: Review on design and components. IEEE/ASME Transactions on Mechatronics, vol. 21, no. 5, pp. 2418–2430, 2016. DOI: 10.1109/TMECH.2015.2501019.CrossRefGoogle Scholar
  24. [24]
    S. D. Lee, J. B. Song. Guideline for determination of link mass of a robot arm for collision safety. In Proceedings of the 8th International Conference on Ubiquitous robots and Ambient Intelligence, IEEE, Incheon, Korea, pp. 383–385, 2011.Google Scholar
  25. [25]
    Y. Yamada, K. Suita, K. Imai, H. Ikeda, N. Sugimoto. A failure-to-safety robot system for human-robot coexistence. Robotics and Autonomous Systems, vol. 18, no. 1–2, pp. 283–291, 1996. DOI: 10.1016/0921-8890(95)00075-5.CrossRefGoogle Scholar
  26. [26]
    L. Q. Zeng, G. M. Bone. Design of elastomeric foam-covered robotic manipulators to enhance human safety. Mechanism and Machine Theory, vol. 60, pp. 1–27, 2013. DOI: 10.1016/j.mechmachtheory.2012.09.010.CrossRefGoogle Scholar
  27. [27]
    H. O. Lim, M. Sunagawa, N. Takeuchi. Development of human-friendly robot with collision force suppression mechanism. In Proceedings of ICROS-SICE, IEEE, Fukuoka, Japan, pp. 5712–5716, 2009.Google Scholar
  28. [28]
    A. De Luca, L. Ferrajoli. Exploiting robot redundancy in collision detection and reaction. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Nice, France, pp. 3299–3305, 2008.Google Scholar
  29. [29]
    S. Haddadin, A. Albu-Schaffer, A. De Luca, G. Hirzinger. Collision detection & reaction: A contribution to safe physical Human-Robot Interaction. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Nice, France, pp. 3352–3363, 2008.Google Scholar
  30. [30]
    B. J. Jung, J. C. Koo, H. R. Choi, H. Moon. Human-robot collision detection under modeling uncertainty using frequency boundary of manipulator dynamics. Journal of Mechanical Science and Technology, vol. 28, no. 11, pp. 4389–4395, 2014. DOI: 10.1007/s12206-014-1006-5.CrossRefGoogle Scholar
  31. [31]
    H. W. Je, J. Y. Baek, M. C. Lee. Min. Current based compliance control method for minimizing an impact force at collision of service robot. International Journal of Precision Engineering and Manufacturing, vol. 12, no. 2, pp. 251–258, 2011. DOI: 10.1007/s12541-011-0034-7.CrossRefGoogle Scholar
  32. [32]
    F. Dimeas, L. D. Avendano-Valencia, N. Aspragathos. Human-robot collision detection and identification based on fuzzy and time series modelling. Robotica, vol. 33, no. 9, pp. 1886–1889, 2015. DOI: 10.1017/S02635747 14001143.CrossRefGoogle Scholar
  33. [33]
    M. S. Erden, T. Tomiyama. Human-intent detection and physically interactive control of a robot without force sensor. IEEE Transactions on Robotics, vol. 26, no. 2, pp. 370–382, 2010. DOI: 10.1109/TRO.2010.2040202.CrossRefGoogle Scholar
  34. [34]
    Y. Karayiannidis, L. Droukas, D. Papageorgiou, Z. Doulgeri. Robot control for task performance and enhanced safety under impact. Frontiers in Robotics and AI, vol. 2, Article number 34, 2015.Google Scholar
  35. [35]
    H. B. Wu, H. Q. Zheng, J. M. Yang, F. Li. Robot arm safety improvement by position/torque switching control. In Proceedings of International Conference on Applied In formatics and Communication, Xi’an, China, pp. 131–139, 2011.Google Scholar
  36. [36]
    S. Kilicaslan, M. K. Ozgoren, S. K. Ider. Hybrid force and motion control of robots with flexible links. Mechanism and Machine Theory, vol. 45, no. 1, pp. 91–105, 2010. DOI: 10.1016/j.mechmachtheory.2009.08.004.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    M. Farooq, D. B. Wang. Hybrid force/position control scheme for flexible joint robot with friction between and the end-effector and the environment. International Journal of Engineering Science, vol. 46, no. 12, pp. 1266–1278, 2008. DOI: 10.1016/j.ijengsci.2008.06.010.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    [38]C. Ott, R. Mukherjee, Y. Nakamura. A hybrid system framework for unified impedance and admittance control. Journal of Intelligent and Robotic Systems, vol. 78, no. 3–4, pp. 359–375, 2015. DOI: 10.1007/s10846-014-0082-1.CrossRefGoogle Scholar
  39. [39]
    L. Roveda, N. Iannacci, F. Vicentini, N. Pedrocchi, F. Braghin, L. M. Tosatti. Optimal impedance force-tracking control design with impact formulation for interaction tasks. IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 130–136, 2016. DOI: 10.1109/LRA.2015.2508061.CrossRefGoogle Scholar
  40. [40]
    M. B. R. Neila, D. Tarak. Adaptive terminal sliding mode control for rigid robotc imanipulators. International Journal of Automation and Computing, vol. 8, no. 2, pp. 215–220, 2011. DOI: 10.1007/s11633-011-0576-2.CrossRefGoogle Scholar
  41. [41]
    L. Zouari, H. Abid, M. Abid. Sliding mode and PI controllers for uncertain flexible joint manipulator. International Journal of Automation and Computing, vol. 12, no. 2, pp. 117–124, 2015. DOI: 10.1007/s11633-015-0878-x.CrossRefGoogle Scholar
  42. [42]
    S. Katsura, Y. Matsumoto, K. Ohnishi. Modeling of force sensing and validation of disturbance observer for force control. IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 530–538, 2007. DOI: 10.1109/TIE.2006. 885459.CrossRefGoogle Scholar
  43. [43]
    J. Srisertpol, C. Khajorntraidet. Estimation of DC motor variable torque using adaptive compensation. In Proceedings of Chinese Control and Decision Conference, IEEE, Guilin, China, pp. 712–717, 2009.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationFuzhou UniversityFuzhouChina
  2. 2.Department of Mechanical SystemMeijo UniversityNagoyaJapan

Personalised recommendations