Advertisement

Feedforward Control for Wind Turbine Load Reduction with Pseudo-LIDAR Measurement

  • Jie Bao
  • Hong Yue
  • William E. Leithead
  • Ji-Qiang Wang
Open Access
Research Article

Abstract

A gain-scheduled feedforward controller, based on pseudo-LIDAR (light detection and ranging) wind speed measurement, is designed to augment the baseline feedback controller for wind turbine’s load reduction in above rated operation. The pseudo-LIDAR measurement data are generated from a commercial software – Bladed using a designed sampling strategy. The nonlinear wind turbine model has been simplified and linearised at a set of equilibrium operating points. The feedforward controller is firstly developed based on a linearised model at an above rated wind speed, and then expanded to the full above rated operational envelope by employing gain scheduling strategy. The combined feedforward and baseline feedback control is simulated on a 5 MW industrial wind turbine model. Simulation studies demonstrate that the proposed control strategy can improve the rotor and tower load reduction performance for large wind turbines.

Keywords

Wind turbine control light detection and ranging (LIDAR) measurement feedforward control load reduction gain scheduling disturbance rejection 

References

  1. [1]
    E. A. Bossanyi. The design of closed loop controllers for wind turbines. Wind Energy, vol. 3, no. 3, pp. 149163, 2000.DOI: 10.1002/(ISSN)1099-1824.CrossRefGoogle Scholar
  2. [2]
    W. E. Leithead, B. Connor. Control of variable speed wind turbines: Design task. International Journal of Control, vol. 73, no. 13, pp. 11891212, 2000.D0I: 10.1080/002071700417849.MathSciNetzbMATHGoogle Scholar
  3. [3]
    F. D. Bianchi, R. J. Mantz, H. De Battista. Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design, London, UK: Springer-Verlag, 2007.CrossRefGoogle Scholar
  4. [4]
    E. A. Bossanyi. Wind turbine control for load reduction. Wind Energy, vol. 6, no. 3, pp. 229244, 2003.DOI: 10. 1002/(ISSN)1099-1824.CrossRefGoogle Scholar
  5. [5]
    W. E. Leithead, S. Dominguez. Controller design for the cancellation of the tower fore-aft mode in a wind turbine. In Proceedings of the 44th IEEE Conference on Decision and Control, IEEE, Seville, Spain, pp. 12761281, 2005.Google Scholar
  6. [6]
    W. E. Leithead, S. Dominguez, C. Spruce. Analysis of tower/blade interaction in the cancellation of the tower fore-aft mode via control. In Proceedings of European Wind Energy Conference, EWEA, London, UK, 2004.Google Scholar
  7. [7]
    W. E. Leithead, S. Dominguez. Coordinated control design for wind turbine control systems. In Proceedings of European Wind Energy Conference and Exhibition, University Strathclyde Glasgow, Athens, Greece, vol. 3, pp. 18181825, 2006.Google Scholar
  8. [8]
    E. A. Bossanyi. Individual blade pitch control for load reduction. Wind Energy, vol. 6, no. 2, pp. 119128, 2003.DOI: 10.1002/(ISSN)1099-1824.CrossRefGoogle Scholar
  9. [9]
    Y. Han, W. E. Leithead. Combined wind turbine fatigue and ultimate load reduction by individual blade control. Journal of Physics: Conference Series, vol. 524, no. 1, Article number 012062, 2014. DOI: 10.1088/1742-6596/524/1/012062.Google Scholar
  10. [10]
    M. Harris, M. Hand, A. Wright. Lidar for Turbine Control, Technical Report NREL/TP-500-39154, National Renewable Energy Laboratory, Golden, USA, 2006.Google Scholar
  11. [11]
    N. Angelou, T. Mikkelsen, K. H. Hansen, M. Sjholm, M. Harris. LIDAR wind speed measurements from a rotating spinner. In Proceedings of European Wind Energy Conference and Exhibition, EWEA, Warsaw, Poland, 2010.Google Scholar
  12. [12]
    M. Sjholm, T. Mikkelsen, J. Mann, K. Enevoldsen, M. Courtney. Spatial averaging-effects on turbulence measured by a continuous-wave coherent lidar. Meteorologische Zeitschrift, vol. 18, no. 3, pp. 281287, 2009.D0I: 10. 1127/0941-2948/2009/0379.Google Scholar
  13. [13]
    D. A. Smith, M. Harris, A. S. Coffey, T. Mikkelsen, H. E. Jrgensen, J. Mann, R. Danielian. Wind lidar evaluation at the Danish wind test site in Hvsre. Wind Energy, vol. 9, no. 12, pp. 8793, 2006.DOI: 10.1002/(ISSN)1099-1824.Google Scholar
  14. [14]
    D. Schlipf, M. Khn. Prospects of a collective pitch control by means of predictive disturbance compensation assisted by wind speed measurements. In Proceedings of the 9th German Wind Energy Conference, EWEA, Bremen, Germany, 2008.Google Scholar
  15. [15]
    D. Schlipf, E. Bossanyi, C. E. Carcangiu, T. Fischer, T. Maul, M. Rossetti. LIDAR Assisted Collective Pitch Control, Technical Report UpWind Deliverable D5.1.3, the European Wind Energy Association (EWEA), Stuttgart, Germany, 2010.Google Scholar
  16. [16]
    J. Laks, L. Pao, A. Wright. Combined feed-forward/feedback control of wind turbines to reduce blade flap bending moments. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, AIAA, Orlando, USA, 2009.Google Scholar
  17. [17]
    F. Dunne, D. Schlipf, L. Y. Pao, A. D. Wright, B. Jonkman, N. Kelley, E. Simley. Comparison of two independent lidar-based pitch control designs. In Proceedings of 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA, Nashville, USA, 2012.Google Scholar
  18. [18]
    F. Dunne, L. Y. Pao, A. D. Wright, B. Jonkman, N. Kelley. Adding feedforward blade pitch control to standard feedback controllers for load mitigation in wind turbines. Mechatronics, vol. 21, no. 4, pp. 682690, 2011.D0I: 10. 1016/j.mechatronics.2011.02.011.CrossRefGoogle Scholar
  19. [19]
    J. Laks, L. Pao, A. Wright, N. Kelley, B. Jonkman. The use of preview wind measurements for blade pitch control. Mechatronics, vol. 21, no. 4, pp. 668681, 2011.D0I: 10.1016/j.mechatronics.2011.02.003.CrossRefGoogle Scholar
  20. [20]
    N. Wang, K. E. Johnson, A. D. Wright. FX-RLS-based feedforward control for LIDAR-enabled wind turbine load mitigation. IEEE Transactions on Control Systems Technology, vol. 20, no. 5, pp. 12121222, 2012.D0I: 10.1109/TCST.2011.2163515.CrossRefGoogle Scholar
  21. [21]
    J. Laks, L. Y. Pao, E. Simley, A. Wright, N. Kelley, B. Jonkman. Model predictive control using preview measurements from lidar. In Proceedings of the 49th Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA, Orlando, IEEE, USA, 2011.Google Scholar
  22. [22]
    D. Schlipf, L. Y. Pao, P. W. Cheng. Comparison of feedforward and model predictive control of wind turbines using LIDAR. In Proceedings of the 51st Conference on Decision and Control, IEEE, Maui, USA, pp. 30503055, 2012.Google Scholar
  23. [23]
    D. Schlipf, D. J. Schlipf, M. Khn. Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy, vol. 16, no. 7, pp. 11071129, 2013.D0I: 10.1002/we. v16.7.CrossRefGoogle Scholar
  24. [24]
    A. Scholbrock, P. Fleming, L. Fingersh, A. Wright, D. Schlipf, F. Haizmann, F. Belen. Field testing LIDARbased feed-forward controls on the NREL controls advanced research turbine. In Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA, Grapevine, Texas, USA, 2013.Google Scholar
  25. [25]
    D. Schlipf, P. Fleming, F. Haizmann, A. Scholbrock, M. Hofsss, A. Wright, P. W. Cheng. Field testing of feedforward collective pitch control on the CART2 using a nacelle-based lidar scanner. Journal of Physics: Conference Series, vol. 555, no. 1, Article number 012090, 2014.Google Scholar
  26. [26]
    F. Haizmann, D. Schlipf, S. R. A. S, A. W. C. Slinger, J. Medley, M. Harris, E. Bossanyi, P. W. Cheng. Optimization of a feed-forward controller using a CW-lidar system on the CART3. In Proceedings of American Control Conference, IEEE, Chicago, USA, pp. 37153720, 2015.Google Scholar
  27. [27]
    N. Wang, K. E. Johnson, A. D. Wright. Comparison of strategies for enhancing energy capture and reducing loads using LIDAR and feedforward control. IEEE Transactions on Control Systems Technology, vol. 21, no. 4, pp. 11291142, 2013.D0I: 10.1109/TCST.2013.2258670.Google Scholar
  28. [28]
    D. Schlipf, S. Kapp., J. Anger, O. Bischoff, M. Hofsss, A. Rettenmeier, M. Khn. Prospects of optimization of energy production by lidar assisted control of wind turbines. In Proceedings of European Wind Energy Association Annual Event, EWEA, Brussels, Belgium, 2011.Google Scholar
  29. [29]
    E. A. Bossanyi, A. Kumar, O. Hugues-Salas. Wind turbine control applications of turbine-mounted LIDAR. Journal of Physics: Conference Series, vol. 555, no. 1, Article number 012011, 2014. DOI: 10.1088/1742-6596/555/1/012011.Google Scholar
  30. [30]
    E. Simley, L. Y. Pao, R. Frehlich, B. Jonkman, N. Kelley. Analysis of wind speed measurements using continuous wave LIDAR for wind turbine control. In Proceedings of 49th Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA, Orlando, USA, 2011.Google Scholar
  31. [31]
    E. Bossanyi. Un-freezing the turbulence: Application to LiDAR-assisted wind turbine control. IET Renewable Power Generation, vol. 7, no. 4, pp. 321329, 2013.DOI: 10.1049/iet-rpg.2012.0260.CrossRefGoogle Scholar
  32. [32]
    D. Schlipf, P. W. Cheng, J. Mann. Model of the correlation between lidar systems and wind turbines for lidar-assisted control. Journal of Atmospheric and Oceanic Technology, vol. 30, no. 10, pp. 22332240, 2013.DOI: 10.1175/JTECH-D-13-00077.1.CrossRefGoogle Scholar
  33. [33]
    E. Simley, L. Y. Pao. A longitudinal spatial coherence model for wind evolution based on large-eddy simulation. In Proceedings of American Control Conference, IEEE, Chicago, USA, pp. 37083714, 2015.Google Scholar
  34. [34]
    J. Laks, E. Simley, L. Pao. A spectral model for evaluating the effect of wind evolution on wind turbine preview control. In Proceedings of American Control Conference, IEEE, Washington, USA, pp. 36733679, 2013.Google Scholar
  35. [35]
    E. Simley, L. Pao. Reducing LIDAR wind speed measurement error with optimal filtering. In Proceedings of American Control Conference, IEEE, Washington DC, USA, pp. 621627, 2013.Google Scholar
  36. [36]
    F. Dunne, L. Y. Pao, D. Schlipf, A. K. Scholbrock. Importance of lidar measurement timing accuracy for wind turbine control. In Proceedings of American Control ConferÔence, IEEE, Portland, USA, pp. 37163721, 2014.Google Scholar
  37. [37]
    E. Simley, N. Angelou, T. Mikkelsen, M. Sjholm, J. Mann, L. Y. Pao. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars. Journal of Renewable and Sustainable Energy, vol. 8, no. 1, Article number 013301, 2016.Google Scholar
  38. [38]
    J. Bao, H. Yue, W. E. Leithead, J. Q. Wang. LIDAR-assisted wind turbine gain scheduling control for load reduction. In Proceedings of the 22nd International Conference on Automation and Computing, IEEE, Colchester, UK, pp. 1520, 2016.Google Scholar
  39. [39]
    P. S. Veers. Three-dimensional Wind Simulation, Technical Report SAND-88-0152, Sandia National Labs., Albuquerque, USA, 1988.Google Scholar
  40. [40]
    W. E. Leithead and B. Connor. Control of variable speed wind turbines: Dynamic models. International Journal of Control, vol. 73, no. 13, pp. 11731188, 2000.D0I: 10.1080/002071700417830.MathSciNetzbMATHGoogle Scholar
  41. [41]
    W. E. Leithead, D. J. Leith, F. Hardan, H. Markou. Global gain-scheduling control for variable speed wind turbines. In Proceedings of European Wind Energy Conference, EWEA, Nice, France, pp. 853856, 1999.Google Scholar
  42. [42]
    M. Tomizuka. Zero phase error tracking algorithm for digital control. Journal of Dynamic Systems, Measurement, and Control, vol. 109, no. 1, pp. 6568, 1987.D0I: 10.1115/1. 3143822.CrossRefzbMATHGoogle Scholar
  43. [43]
    H. Romdhane, K. Dehri, A. S. Nouri. Second order sliding mode control for discrete decouplable multivariable systems via input-output models. International Journal of Automation and Computing, vol. 12, no. 6, pp. 630638, 2015.D0I: 10.1007/s11633-015-0904-z.CrossRefGoogle Scholar
  44. [44]
    R. Garraoui, M. Ben Hamed, L. Sbita. A robust optimization technique based on first order sliding mode approach for photovoltaic power systems. International Journal of Automation and Computing, vol. 12, no. 6, pp. 620629, 2015.D0I: 10.1007/s11633-015-0902-1.CrossRefGoogle Scholar
  45. [45]
    Z. Q. Wu, J. P. Xie. Design of adaptive robust guaranteed cost controller for wind power generator. International Journal of Automation and Computing, vol. 10, no. 2, pp. 111117, 2013.D0I: 10.1007/s11633-013-0703-3.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Electronic and Electrical EngineeringUniversity of StrathclydeGlasgowUK
  2. 2.Jiangsu Province Key Laboratory of Aerospace Power SystemNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations