Multi-sensor Data Fusion for Wheelchair Position Estimation with Unscented Kalman Filter

  • Derradji Nada
  • Mounir Bousbia-SalahEmail author
  • Maamar Bettayeb
Research Article


This paper investigates the problem of estimation of the wheelchair position in indoor environments with noisy measurements. The measuring system is based on two odometers placed on the axis of the wheels combined with a magnetic compass to determine the position and orientation. Determination of displacements is implemented by an accelerometer. Data coming from sensors are combined and used as inputs to unscented Kalman filter (UKF). Two data fusion architectures: measurement fusion (MF) and state vector fusion (SVF) are proposed to merge the available measurements. Comparative studies of these two architectures show that the MF architecture provides states estimation with relatively less uncertainty compared to SVF. However, odometers measurements determine the position with relatively high uncertainty followed by the accelerometer measurements. Therefore, fusion in the navigation system is needed. The obtained simulation results show the effectiveness of proposed architectures.


Data fusion unscented Kalman filter (UKF) measurement fusion (MF) navigation state vector fusion (SVF) wheelchair 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank the Laboratory of Automatics and Signals at Annaba (LASA) whose members displayed great interest and support to carry out this work.


  1. [1]
    S. Safari, F. Shabani, D. Simon. Multirate multisensor data fusion for linear systems using Kalman filters and a neural network. Aerospace Science and Technology, vol. 39, pp. 465–471, 2014.CrossRefGoogle Scholar
  2. [2]
    F. Cappello, R. Sabatini, S. Ramasamy. Multi-sensor Data Fusion Techniques for RPAS Detect, Track and Avoid, SAE Technical Paper 2015-01-2475, Seattle, Washington, USA, 2015.CrossRefGoogle Scholar
  3. [3]
    D. U. Guanglong, P. Zhang. Human-manipulator interface using hybrid sensors with Kalman filters and adaptive multi-space transformation. Measurement, vol. 55, pp. 413–422, 2014.CrossRefGoogle Scholar
  4. [4]
    W. J. Qi, P. Zhang, Z. L. Deng. Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances. Signal Processing, vol. 99, pp. 185–200, 2014.CrossRefzbMATHGoogle Scholar
  5. [5]
    J. R. Raol. Multi-Sensor Data Fusion with MATLAB®, Boca Raton, USA: CRC Press Inc., 2009.CrossRefGoogle Scholar
  6. [6]
    D. L. Hall, S. A. H. McMullen. Mathematical Techniques in Multisensor Data Fusion, Norwood, USA: Artech House, 2004.zbMATHGoogle Scholar
  7. [7]
    V. Naidu. Fusion architectures for 3D target tracking using IRST and radar measurements. Journal of Aerospace Sciences & Technologies, vol. 62, no. 3, pp. 183–195, 2010.Google Scholar
  8. [8]
    D. Nada, M. Bousbia Salah, M. Bettayeb. Fusion architectures with extended Kalman Filter for locate wheelchair position using sensors measurements. In Proceedings of International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), IEEE, Tunis, Tunisia, pp. 1–7, 2014.Google Scholar
  9. [9]
    R. Simpson, E. LoPresti, S. Hayashi, I. Nourbakhsh, D. Miller. The smart wheelchair component system. The Journal of Rehabilitation Research and Development, vol. 41, no. 3B, pp. 429–442, 2004.CrossRefGoogle Scholar
  10. [10]
    D. Ding, B. Parmanto, H. A. Karimi, D. Roongpiboonsopit, G. Pramana, T. Conahan, P. Kasemsuppakorn. Design considerations for a personalized wheelchair navigation system. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Lyon, France, pp. 4790–4793, 2007.Google Scholar
  11. [11]
    A. Ferworn, A. Arora, M. Jaseemuddin. IP mobility issues for a mobile tele-robotic system-NEPWAK. International Journal of Automation and Computing, vol. 1, no. 1, pp. 10–16, 2004.CrossRefGoogle Scholar
  12. [12]
    R. Tang, X. Q. Chen, M. Hayes, I. Palmer. Development of a navigation system for semiautonomous operation of wheelchairs. In Proceedings of IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA), IEEE, Suzhou, China, pp. 257–262, 2012.Google Scholar
  13. [13]
    N. Wattanavarangkul, T. Wakahara. Indoor navigation system for wheelchair using smartphones. Information Technology Convergence, Lecture Notes in Electrical Engineering, J. J. Park, L. Barolli, F. Xhafa, H. Y. Jeong, Eds., Netherlands: Springer, pp. 233–241, 2013.CrossRefGoogle Scholar
  14. [14]
    J. B. Gao, C. J. Harris. Some remarks on Kalman filters for the multisensor fusion. Information Fusion, vol. 3, no. 3, pp. 191–201, 2002.CrossRefGoogle Scholar
  15. [15]
    B. D. O. Anderson, J. B. Moore, M. Eslami. Optimal filtering. IEEE Transactions on Systems, Man, and Cybernetics, vol. 12, no. 2, pp. 235–236, 1982.CrossRefGoogle Scholar
  16. [16]
    H. Zhao, Z. Y. Wang. Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended Kalman filter for data fusion. IEEE Sensors Journal, vol. 12, no. 5, pp. 943–953, 2012.CrossRefGoogle Scholar
  17. [17]
    E. A. Wan, R. Van Der Merwe. The unscented Kalman filter. Kalman Filtering and Neural Networks, S. Haykin, Ed., New York, USA: John Wiley Sons Inc., pp. 221–280, 2001.CrossRefGoogle Scholar
  18. [18]
    W. L. Li, S. H. Sun, Y. M. Jia, J. P. Du. Robust unscented Kalman filter with adaptation of process and measurement noise covariances. Digital Signal Processing, vol. 48, pp. 93–103, 2016.MathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Kernbach. Encoder-free odometric system for autonomous microrobots. Mechatronics, vol. 22, no. 6, pp. 870–880, 2012.CrossRefGoogle Scholar
  20. [20]
    S. G. Tzafestas. 4-Mobile robot sensors. Introduction to Mobile Robot Control, S. G. Tzafestas, Ed., Oxford, UK: Elsevier, pp. 101–135, 2014.CrossRefGoogle Scholar
  21. [21]
    S. B. Lazarus, I. Ashokaraj, A. Tsourdos, R. Zbikowski, P. M. G. Silson, N. Aouf, B. A. White. Vehicle localization using sensors data fusion via integration of covariance intersection and interval analysis. IEEE Sensors Journal, vol.7, no. 9, pp. 1302–1314, 2007.CrossRefGoogle Scholar
  22. [22]
    T. Guilford, G. K. Taylor. The sun compass revisited. Animal Behaviour, vol. 97, pp. 135–143, 2014.CrossRefGoogle Scholar
  23. [23]
    Datasheet. 1-Axis and 2-Axis Magnetic Sensors HMC1001/ 1002/1021/-1022, Honeywell, Morristown, USA, [Online], Available: common/documents/myaerospacecatalog-documents/ Missiles-Munitions/, August 2008.Google Scholar
  24. [24]
    M. J. Caruso. Applications of magnetic sensors for low cost compass systems. In Proceedings of the Position Location and Navigation Symposium, IEEE, San Diego, USA, pp. 177–184, 2000.Google Scholar
  25. [25]
    M. A. Horton, A. R. Newton. Method and Apparatus for Determining Position and Orientation of a Moveable Object Using Accelerometers, Patent 5615132, USA, March 1997.Google Scholar
  26. [26]
    M. Bousbia-Salah, M. Fezari. A navigation tool for blind people. Innovations and Advanced Techniques in Computer and Information Sciences and Engineering, T. Sobh, Ed., Netherlands: Springer, pp. 333–337, 2007.CrossRefGoogle Scholar
  27. [27]
    M. Bousbia-Salah, M. Bettayeb, A. Larbi. A navigation aid for blind people. Journal of Intelligent and Robotic Systems, vol. 64, no. 3–4, pp. 387–400, 2011.CrossRefGoogle Scholar
  28. [28]
    M. L. Anjum, J. Park, W. Hwang, H. I. Kwon, J. H. Kim, C. Lee, K. S. Kim, D. I. Cho. Sensor data fusion using unscented Kalman filter for accurate localization of mobile robots. In Proceedings of International Conference on Control Automation and Systems (ICCAS), IEEE, Gyeonggido, Korea, pp. 947–952, 2010.Google Scholar
  29. [29]
    N. Houshangi, F. Azizi. Mobile robot position determination using data integration of odometry and gyroscope. In Proceedings of 2006 World Automation Congress, IEEE, Budapest, Hungary, pp. 1–8, 2006.Google Scholar
  30. [30]
    S. Julier, J. Uhlmann, H. F. Durrant-Whyte. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, vol. 45, no. 3, pp. 477–482, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    F. Azizi, N. Houshangi. Sensor integration for mobile robot position determination. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, IEEE, Washington, USA, pp. 1136–1140, 2003.Google Scholar
  32. [32]
    A. Sakai, Y. Tamura, Y. Kuroda. An efficient solution to 6dof localization using unscented Kalman filter for planetary rovers. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, St. Louis, USA, pp. 4154–4159, 2009.Google Scholar
  33. [33]
    C. J. Sun, H. Y. Kuo, C. E. Lin. A sensor based indoor mobile localization and navigation using unscented Kalman filter. In Proceedings of 2010 IEEE/ION Position Location and Navigation Symposium (PLANS), IEEE, Indian Wells, California, USA, pp. 327–331, 2010.Google Scholar
  34. [34]
    I. Arasaratnam, S. Haykin, T. R. Hurd. Cubature Kalman filtering for continuous-discrete systems: Theory and simulations. IEEE Transactions on Signal Processing, vol. 58, no. 10, pp. 4977–4993, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    P. Closas, C. Fernÿndez-Prades. Bayesian nonlinear filters for direct position estimation. In Proceedings of IEEE Aerospace Conference, IEEE, Big Sky, USA, pp. 1–12, 2010.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.LASA laboratory, Department of Electronics, Faculty of EngineeringBadji Mokhtar Annaba UniversityAnnabaAlgeria
  2. 2.Department of Electrical and Computer Engineering, College of EngineeringUniversity of SharjahSharjahUnited Arab Emirates

Personalised recommendations