Advertisement

Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems

  • Cui-Mei Jiang
  • Shu-Tang Liu
  • Fang-Fang Zhang
Research Article

Abstract

The aim of this paper is to study complex modified projective synchronization (CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate fractional-order systems and active control method, control laws are derived to achieve CMPS in three situations including fractional-order complex Lorenz system driving fractional-order complex Chen system, fractional-order real Rössler system driving fractional-order complex Chen system, and fractional-order complex Lorenz system driving fractional-order real Lü system. Numerical simulations confirm the validity and feasibility of the analytical method.

Keywords

Fractional-order system chaotic complex system incommensurate order complex modified projective synchronization (CMPS) active control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Key Program of National Natural Science Foundation of China (No. 61533011) and National Natural Science Foundation of China (Nos. 61273088 and 61603203).

References

  1. [1]
    A. C. Fowler, J. D. Gibbon, M. J. McGuinness. The complex Lorenz equations. Physcia D, vol. 4, pp. 139–163, 1982.Google Scholar
  2. [2]
    G. M. Mahmoud, E. E. Mahmoud, A. A. Arafa. On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communictations. Physcia Scripta, vol. 87, no. 5, Article number 055002, 2013.Google Scholar
  3. [3]
    S. T. Liu, F. F. Zhang. Complex function projective synchronization of complex chaotic system and its applications in secure communications. Nonlinear Dynamics, vol. 76, pp. 1087–1097, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    E. Roldan, G. J. Devalcarcel, R. Vilaseca. Single-Mode-Laser phase dynamics. Physical Review A, vol. 48, no. 1, pp.591–598, 1993.Google Scholar
  5. [5]
    C. Z. Ning, H. Haken. Detuned lasers and the complex Lorenz equations-subcritical and supercritical Hofp bifurcations. Physical Review A, vol. 41, no. 7, pp. 3826–3837, 1990.CrossRefGoogle Scholar
  6. [6]
    V. Y. Toronov, V. L. Derbov. Boundedness of attractors in the complex Lorenz model. Physical Review E, vol. 55, no. 3, pp. 3689–3692, 1997.MathSciNetCrossRefGoogle Scholar
  7. [7]
    G. M. Mahmoud, M. A. AlKashif, S. A. Aly. Basic properties and chaotic synchronization of complex Lorenz system. International Journal of Modern Physics C, vol. 18, pp. 253–265, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    G. M. Mahmoud, T. Bountis, E. E. Mahmoud. Active control and global synchronization of the complex Chen and Lü systems. International Journal of Bifurcation and Chaos, vol. 17, pp. 4295–4308, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G. M. Mahmoud, E. E. Mahmoud, M. E. Ahmed. On the hyperchaotic complex Lü systems. Nonlinear Dynamics, vol. 58, pp. 725–738, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    G. M. Mahmoud, M. E. Ahmed, E. E. Mahmoud. Analysis of hyperchaotic complex Lorenz systems. International Journal of Modern Physics C, vol. 19, pp. 1477–1494, 2008.Google Scholar
  11. [11]
    G. M. Mahmoud, M. E. Ahmed. On autonomous and nonautonomous modified hyperchaotic complex Lü systems. International Journal of Bifurcation and Chaos, vol. 21, pp. 1913–1926, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    G. M. Mahmoud, E. E. Mahmoud. Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dynamics, vol. 62, pp. 875–882, 2010.CrossRefzbMATHGoogle Scholar
  13. [13]
    P. Liu, S. T. Liu. Anti-synchronization of chaotic complex nonlinear systems. Physcia Scripta, vol. 83, no. 5, Article number 065006, 2011.Google Scholar
  14. [14]
    P. Liu, S. T. Liu. Adaptive Anti-synchronization of chaotic complex nonlinear systems with unknown parameters. Nonlinear Analysis: Real World Applications, vol. 12, pp. 3046–3055, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    G. M. Mahmoud, E. E. Mahmoud. Lag synchronization of hyperchaotic complex nonlinear systems. Nonlinear Dynamics, vol. 67, pp. 1613–1622, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    G. M. Mahmoud, E. E. Mahmoud. Phase synchronization and anti-phase synchronization of two identical hyperchaotic complex nonlinear systems. Nonlinear Dynamics, vol. 61, pp. 141–152, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    G. M. Mahmoud, E. E. Mahmoud. Synchronization and control of hyperchaotic complex Lorenz systems. Mathematics and Computers in Simulation, vol. 80, no. 2, pp. 2286–2296, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    F. F. Zhang, S. T. Liu. Full state hybrid projective synchronization and parameters identification for uncertain chaotic (hyperchaotic) complex systems. Journal of Computational and Nonlinear Dynamics, vol. 9, no. 2, Article number 021009, 2013.Google Scholar
  19. [19]
    G. M. Mahmoud, E. E. Mahmoud. Complex modified projective synchronization of two chaotic complex nonlinear systems. Nonlinear Dynamics, vol. 73, pp. 2231–2240, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    F. F. Zhang, S. T. Liu, W. Y. Yu. Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos. Chinese Physics B, vol. 22, no. 12, Article number 120505, 2013.Google Scholar
  21. [21]
    C. Luo, X. Y. Wang. Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dynamics, vol. 71, pp. 241–257, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    C. Luo, X. Y. Wang. Chaos generated from the fractionalorder complex Chen system and its application to digital secure communication. International Journal of Modern Physics C, vol.24, no. 4, Article number 1350025, 2013.Google Scholar
  23. [23]
    X. J. Liu, L. Hong, L. X. Yang. Fractional-order complex T system: bifurcations, chaos control, and synchronization. Nonlinear Dynamics, vol. 75, pp. 589–602, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    J. Liu. Complex modified hybrid projective synchronization of different dimensional fractional-order complex chaos and real hyper-chaos. Entropy, vol. 16, pp. 6195–6211, 2014.CrossRefGoogle Scholar
  25. [25]
    K. B. Oldham, J. Spanier. The Fractional Calculus. Academic Press, San Diego, USA: 1974.zbMATHGoogle Scholar
  26. [26]
    I. Podlubny. Fractional Differential Equations. Academic Press, San Diego, USA: 1999.zbMATHGoogle Scholar
  27. [27]
    A. A. Kilbas, H. M. Srivastava, J. J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, the Netherlands, 2006.zbMATHGoogle Scholar
  28. [28]
    A. Charef, H. H. Sun, Y. Y. Tsao, B. Onaral. Fractal system as represented by singularity function. IEEE Transactions on Automatic Contro, vol. 37, no. 9, pp. 1465–1470, 1992.Google Scholar
  29. [29]
    K. Diethelm, N. J. Ford, A. D. Freed. A predictor-corrector approch for the numerical solution of fractional differential equations. Nonlinear Dynamics, vol. 29, pp. 3–22, 2002.Google Scholar
  30. [30]
    K. Diethelm, N. J. Ford, A. D. Freed. Detailed error analysis for a fractional Adams method. Numerical algorithms, vol. 36, pp. 31–52, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    D. Matignon. Stability results for fractional differential equations with applications to control processing. In Proceedings of IMACS/IEEE-SMC Multiconference on Control, Optimization and Supervision, IEEE, Lille, France, pp. 963–968, 1996.Google Scholar
  32. [32]
    W. Deng, C. Li, J. Lü. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, vol.48, pp. 409–16, 2007.Google Scholar
  33. [33]
    L. Pan, W. N. Zhou, J. N. Fang, D. Q. Li. Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control. Communications in Nonlinear Science and Numerical Simulation, vol. 15, pp. 3754–3762, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    G. Q. Si, Z. Y. Sun, Y. B. Zhang, W. Q. Chen. Projective synchronization of different fractional-order chaotic systems with non-identical orders. Nonlinear Analysis: Real World Applications, vol. 13, pp. 1761–1771, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    C. G. Li, G. R. Chen. Chaos and hyperchaos in the fractional-order Rossler equations. Communications in Nonlinear Science and Numerical Simulation A, vol. 341, pp. 55–614, 2004.Google Scholar
  36. [36]
    J. G. Lu. Chaotic dynamics of the fractional-order Lü system and its synchronization. Physics Letters A, vol. 354, no.4, pp. 305–311, 2006.Google Scholar

Copyright information

© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Control Science and EngineeringShandong UniversityJinanChina
  2. 2.School of Electrical Engineering and AutomationQilu University of TechnologyJinanChina

Personalised recommendations