Advertisement

Zircon chemistry and new laser ablation U–Pb ages for uraniferous granitoids in SW Cameroon

  • V. F. EmbuiEmail author
  • C. E. Suh
  • J. M. Cottle
  • J. Etame
  • J. Mendes
  • C. M. Agyingi
  • A. Vishiti
  • E. M. Shemang
  • B. Lehmann
Original Article
  • 30 Downloads

Abstract

The Ekomedion two-mica granite, southwestern Cameroon, has potential for uranium and molybdenum mineralization. Here, we present LA-ICP-MS U–Pb ages, Lu–Hf isotope characteristics, trace element concentrations and Ti-geothermometry of zircon from this granite hosting U–Mo mineralization in pegmatitic pods. The majority of zircon are CL-dark though some CL-bright cores were also identified. U–Pb zircon age data range from 121 ± 3 to 743 ± 11 Ma with only 5 of 34 ages being near concordant. The concordant mean age of 603 ± 12 Ma is similar to ages of granitic intrusions along the Central African Shear Zone in Cameroon. Apparent ages with mean of 261 ± 6 Ma reveal open system behavior with respect to Pb and/or U. Zircon εHfi values range from − 20.3 to − 0.3. This implies that U–Mo was remobilized during partial melting of the surrounding gneiss. Zircon Th/U > 0.1 as well as an increasing Hf with decreasing Th/U indicates that fractional crystallization was the main factor that controlled U–Mo mineralization in pegmatitic pods. Y and Y/Ho ratios cluster from 29 to 33 close to the chondritic ratio of 28 and indicate fractionation of Y and Ho with low F contents during the earliest stages of crystallization. Late stage accumulation of F-rich magmatic-hydrothermal fluids impacted U–Mo mineralization as a ligand. Zircon contains a prominent negative Eu anomaly pointing to a fractionating system rich in plagioclase. Calculated Ti-in-zircon temperatures span 672 °C to 1232 °C with the temperatures at the high end reflecting interference from mineral inclusions in the zircon grains while the lower temperature values are linked to crystallization.

Keywords

Zircons Uranium-molybdenum Cameroon 

Notes

Funding

Funding was provided by Alexander von Humboldt-Stiftung (DE).

Supplementary material

11631_2019_337_MOESM1_ESM.xlsx (31 kb)
Supplementary material 1 (XLSX 30 kb)

References

  1. Affaton P, Rahaman MA, Trompette R, Sougy J (1991) The Dahomeyide orogen: tectono thermal evolution and relationships with the Volta Basin. In: Dallmeyer RD, Lécorché JP (eds) The West African orogens and circum-Atlantic correlatives. Springer, Berlin, pp 107–122CrossRefGoogle Scholar
  2. Alexandre P (2010) Mineralogy and geochemistry of the sodium metasomatism related uranium occurrence of Aricheng South, Guyana. Miner Deposita 45:351–367CrossRefGoogle Scholar
  3. Amelin Y, Lee DC, Halliday AN, Pidgeon RT (1999) Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399:252–255CrossRefGoogle Scholar
  4. Amelin Y, Lee DC, Halliday AN (2000) Early-middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochim Cosmochim Acta 64:4205–4225CrossRefGoogle Scholar
  5. Asaah VA, Basem Z, Lehmann B, Dirk F, Burgess R, Suh CE (2015) Geochemistry and geochronology of the ~ 620 Ma gold-associated Batouri granitoids, Cameroon. Int Geol Rev 57(11–12):1485–1509CrossRefGoogle Scholar
  6. Ateh KI, Suh CE, Shemang EM, Vishiti A, Tata E, Chombong NN (2017) New LA-ICP-MS U–Pb Ages, Lu–Hf systematics and REE characterization of zircons from a granitic pluton in the Betare Oya Gold District, SE Cameroon. J Geosci Geomat 5(6):267–283Google Scholar
  7. Barth AP, Wooden JL (2010) Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol 27:149–159CrossRefGoogle Scholar
  8. Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Miner Petrol 123:323–333CrossRefGoogle Scholar
  9. Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Petrol 14:602–622CrossRefGoogle Scholar
  10. Belousova EA, Griffin WL, O’Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling: examples from Eastern Australian granitoids. J Petrol 47(2):329–353CrossRefGoogle Scholar
  11. Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O’Rveilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119:457–466CrossRefGoogle Scholar
  12. Bindeman IN, Serebryakov NS, Schmitt AK, Vazquez JA, Guan Y, Azimov PY, Astafiev BY, Palandri J, Dobrzhinetskaya L (2014) Field and microanalytical isotopic investigation of ultra-depleted in 18O Paleoproterozoic “Slushball Earth” rocks from Karelia, Russia. Geosphere 10:308–339CrossRefGoogle Scholar
  13. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140CrossRefGoogle Scholar
  14. Blichert-Toft J, Albarede F (1997) The Lu–Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258CrossRefGoogle Scholar
  15. Bouyo HM, Toteu SF, Deloule E, Penaye J, Van Schmus WR (2009) U–Pb and Sm–Nd dating of high-pressure granulites from Tcholliré and Banyo regions: evidence for a Pan-African granulite facies metamorphism in northcentral Cameroon. J Afr Earth Sci 54:144–154CrossRefGoogle Scholar
  16. Bouyo HM, Penaye J, Njel UO, Moussango API, Sep JPN, Nyama BA, Wassouo WJJ, Abate ME, Yaya F, Mahamat A, Ye H, Wu F (2016) Geochronologica, geochemical and mineralogical constraints of emplacement depth of TTG suite form the Sinassi Batholith in the Central African Fold belt (CAFB) of northern Cameroon: implication for tectonomagmatic evolution. J Afr Earth Sci 116:9–41CrossRefGoogle Scholar
  17. Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. ElsevierGoogle Scholar
  18. Breeding CM, Ague JJ, Grove M, Rupke AL (2004) Isotopic and chemical alteration of zircon by metamorphic fluids: U–Pb age depth-profiling of zircon crystals from Barrow’s garnet zone, northeast Scotland. Am Miner 89:1067–1077CrossRefGoogle Scholar
  19. Burnham AD, Berry AJ (2012) An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochim Cosmochim Acta 95:196–212CrossRefGoogle Scholar
  20. Carson CJ, Ague JJ, Grove M, Coath CD, Harrison TM (2002) U–Pb isotopic behaviour of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, east Antarctica. Earth Planet Sci Lett 199:287–310CrossRefGoogle Scholar
  21. Castiñeiras P, Navidad M, Casas JM, Liesa M, Carreras J (2011) Petrogenesis of Ordovician magmatism in the Pyrenees (Albera and Canigó Massifs) determined on the basis of Zircon minor and trace element composition. J Geol 119(5):521–534CrossRefGoogle Scholar
  22. Cavosie AJ, Valley JW, Wilde SA (2006) Correlated microanalysis of zircon: trace element, δ18O, and U–Th–Pb isotopic constraints on the igneous origin of complex > 3900 Ma detrital grains. Geochim Cosmochim Acta 70:5601–5616CrossRefGoogle Scholar
  23. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83(1–2):1–26CrossRefGoogle Scholar
  24. Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172:5–24CrossRefGoogle Scholar
  25. Chombong NN, Suh CE, Ilouga CD (2013) New detrital zircon U–Pb ages from BIF-related metasediments in the Ntem Complex (Congo craton) of southern Cameroon, West Africa. Nat Sci 5(7):835–847Google Scholar
  26. Chombong NN, Suh CE, Lehmann B, Vishiti A, Ilouga DC, Shemang EM, Tantoh BS, Kedia AC (2017) Host rock geochemistry, texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon. Appl Earth Sci 126(3):129–145CrossRefGoogle Scholar
  27. Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Miner Mag 70:517–543CrossRefGoogle Scholar
  28. Claiborne LL, Miller CF, Wooden JL (2010) Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Miner Petrol 160:511–531CrossRefGoogle Scholar
  29. Cottle JM, Stearns MA (2017) Application of single-shot laser ablation split-stream inductively coupled plasma mass spectrometry to accessory phase petrochronology. Microstruct Geochronol Planet Rec Down Atom Scale 232:91CrossRefGoogle Scholar
  30. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen & UnwinGoogle Scholar
  31. Dhuime B, Hawkesworth C, Cawood P, Storey C (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335:1334–1336CrossRefGoogle Scholar
  32. Djouka-Fonkwe ML, Schulz B, Schüssler U, Tchouankoue JP, Nzolang C (2008) Geochemistry of the Bafoussam Pan-African I- and S-type granitoids in western Cameroon. J Afr Earth Sci 50:148–167CrossRefGoogle Scholar
  33. Dolníček Z, Fojt B, Prochaska W, Kucěra J, Sulovsky P (2009) Origin of the Zalesi U–Ni–Co–As–Ag/Bi deposit, Bohemian Massif, Czech Republic: fluid inclusion and stable isotope constraints. Miner Deposita 44:81–97CrossRefGoogle Scholar
  34. Dumont JF (1986) Identification par télédétection de l’accident de la Sanaga (Cameroun). Sa position dans le contexte des grands accidents d’AfriqueCentrale et de la limitenord du cratonconcolais. Géodynamique 1:13–19Google Scholar
  35. Farges F, Siewert R, Ponader CW, Brown GE, Pichavant M, Behrens H (2006) Structural environments around molybdenum in silicate glasses and melts. II. Effect of temperature, pressure, H2O, halogens and sulfur. Can Mineral 44:755–773CrossRefGoogle Scholar
  36. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Miner Petrol 154:429–437CrossRefGoogle Scholar
  37. Geisler T, Pidgeon RT, van Bronswijk W, Kurtz R (2002) Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chem Geol 191:141–154CrossRefGoogle Scholar
  38. Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003) Experimental hydrothermal alteration of partially metamict zircon. Am Miner 88:1496–1513CrossRefGoogle Scholar
  39. Gordon SM, Grove M, Whitney DL, Schmitt AK, Teyssier C (2009) Time–temperature–fluid evolution of migmatite dome crystallization: coupled U–Pb age, Ti thermometry, and O isotopic ion microprobe depth profiling of zircon and monazite. Chem Geol 262(2009):186–201CrossRefGoogle Scholar
  40. Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147CrossRefGoogle Scholar
  41. Harrison TM, Schmitt AK (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci Lett 261:9–19CrossRefGoogle Scholar
  42. Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood P, Kemp AIS, Storey CD (2010) The generation and evolution of the continental crust. J Geol Soc Lond 167:229–248CrossRefGoogle Scholar
  43. Heinonen A, Mänttäri I, Rämö TO, Andersen T, Larjamo K (2016) A priori evidence for zircon antecryst entrainment in megacrystic Proterozoic granites. Geology 44(3):227–230CrossRefGoogle Scholar
  44. Horie K, Hidaka H, Gauthier-Lafaye F (2006) Elemental distribution in zircon: alteration and radiation-damage effects. Phys Chem Earth 31:587–592CrossRefGoogle Scholar
  45. Horstwood M, Košler J, Gehrels G, Jackson SE, Mclean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P, Bowring JF, Condon DJ, Schoene B (2016) Community-derived standards for LA-ICP-MS-(Th–)Pb geochronology—uncertainty propagation, age interpretation and data reporting. Geost Geoanal Res 40:311–332CrossRefGoogle Scholar
  46. Hoskin PWO, Schaltegger U (2003) The composition of zircon in igneous and metamorphic petrogenesis. Rev Miner Geochem 53:27–62CrossRefGoogle Scholar
  47. Kebede T, Horie K, Hidaka H, Terada K (2007) Zircon ‘microvein’ in peralkaline granitic gneiss, western Ethiopia: origin, SHRIMP U–Pb geochronology and trace element investigations. Chem Geol 242:76–102CrossRefGoogle Scholar
  48. Kemp AIS, Hawkesworth CJ (2013) Growth and differentiation of the continental crust from isotope studies of accessory minerals. In: Rudnick RL (ed) Treatise on geochemistry. The Crust 12, 2nd edn. Elsevier Science, OxfordGoogle Scholar
  49. Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. Am Miner 84:1235–1255CrossRefGoogle Scholar
  50. Kozlik M, Johann GR, Gerdes A (2016) U–Pb, Lu–Hf and trace element characteristics of zircon from the Felbertalscheelite deposit (Austria): new constraints on timing and source of W mineralization. Chem Geol 421:112–126CrossRefGoogle Scholar
  51. Kříbek B, Zăk K, Dobeš P, Leichmann J, Pudilova M, Rene M, Scharm B, Scharmova M, Hajek A, Holeczy D, Hein FU, Lehmann B (2009) The Rozňa uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization. Miner Deposita 44:99–128CrossRefGoogle Scholar
  52. Kwekam M, Liegeois JP, Njonfang E, Affaton P, Hartmann G, Tchoua F (2010) Nature, origin and significance of the Pan-Affrican high-k calc-alkaline Fomopea plutonic complex in the Central African Fold Belt (Cameroon). J Afr Earth Sci 57:79–95CrossRefGoogle Scholar
  53. Kylander-Clark A, Hacker BR, Cottle JM (2013) Laser-ablation split-stream ICP petrochronology. Chem Geol 345:99–112CrossRefGoogle Scholar
  54. Li H, Watanabe K, Yonezu K (2014) Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, China: implications for petrogenesis and W–Sn mineralization. Lithos 127:468–482Google Scholar
  55. Ludwig KR (2012) User’s manual for Isoplot 3.75. Berkeley Geochronology Center Special Publication (5). http://www.bgc.org/isoplot_etc/isoplot/Isoplot3_75-4_15manual. Accessed 30 Feb 2012
  56. Mao JW, Xie GQ, Bierlein F, Qu WJ, Duc AD, Yea HS, Pirajno F, Li HM, Guo BJ, Li YF, Yang ZQ (2008) Tectonic implications from Re–Os dating of Mesozoic molybdenum deposits in the East Qinling–Dabieorogenic belt. Geochimicaet Cosmochimica Acta 72:4607–4626CrossRefGoogle Scholar
  57. Markey R, Stein HJ, Hannah JL, Zimmerman A, Selby D, Creaser RA (2007) Standardizing Re–Os geochronology: a new molybdenite reference material (Henderson, USA) and the stoichiometry of Os salts. Chem Geol 244:74–87CrossRefGoogle Scholar
  58. McKinney ST, Cottle JM, Ledgerer GW (2015) Evaluating rare earth element (REE) mineralization mechanisms in Proterozoic gneiss, Music Valley, California. GSA Bull 127:1135–1152Google Scholar
  59. Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62:2509–2520CrossRefGoogle Scholar
  60. Mezger K, Krogstad EJ (1997) Interpretation of discordant U–Pb zircon ages: an evaluation. J Metamorph Geol 15:127–140CrossRefGoogle Scholar
  61. Miller JS, Wooden JL (2004) Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic field, California. J Petrol 45(11):2155–2170CrossRefGoogle Scholar
  62. Mojzsis SJ, Harrison TM (2002) Establishment of a 3.83-Ga magmatic age for the Akiliatonalite (southern West Greenland). Earth Planet Sci Lett 202:563–576CrossRefGoogle Scholar
  63. Mosoh Bambi CK, Suh CE, Nzenti JP, Frimmel HE (2012) U–Mo mineralization potential in Pan-African granites, southwestern Cameroon: economic geology of the Ekomedion prospect. J Afr Earth Sci 65:25–45CrossRefGoogle Scholar
  64. Mosoh Bambi CK, Frimmel HE, Zeh A, Suh CE (2013) Age and origin of Pan-African granites and associated U–Mo mineralization at Ekomedion, southwestern Cameroon. J Afr Earth Sci 88:15–37CrossRefGoogle Scholar
  65. Neves SP, Bruguier O, Vauchez A, Bosch D, da Silva JMR, Mariano G (2006) Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): implications for western Gondwana assembly. Precambrian Res 149:197–216CrossRefGoogle Scholar
  66. Nex PAM, Kinnaird JA, Oliver GJH (2001) Petrology, geochemistry and uranium mineralisation of post-collisional magmatism around Goanikontes, southern Central Zone, Damaran Orogen, Namibia. J Afr Earth Sci 33:481–502CrossRefGoogle Scholar
  67. Ngako V, Affaton P, Nnange JM, Njanko T (2003) Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements. J Afr Earth Sci 36:207–214CrossRefGoogle Scholar
  68. Ngako V, Affaton P, Njonfang E (2008) Pan-African tectonics in northwestern Cameroon: implication for the history of western Gondwana. Gondwana Res 14:509–522CrossRefGoogle Scholar
  69. Ngnotue T, Ganno S, Nzenti JP, Schulz B, Tchaptchet TDI, Suh CE (2012) Geochemistry and geochronology of Peraluminous high-K granitic leucosomes of Yaoundé series (Cameroon): evidence for a unique Pan-African magmatism and melting event in north equatorial fold belt. Int J Geosci 3:525–548CrossRefGoogle Scholar
  70. Njanko T, Nédélec A, Affaton P (2006) Synkinematic high-K calc-alkaline plutons associated with the Pan-African Central Cameroon shear zone (W-Tibati area): petrology and geodynamic significance. J Afr Earth Sci 44:494–510CrossRefGoogle Scholar
  71. Njome MS, Suh CE (2005) Tectonic evolution of the Tombel graben basement, southwestern Cameroon. Episodes 28:37–41Google Scholar
  72. Nzenti JP, Ngako V, Kambou R, Penaye J, Bassahak J, Njel OV (1992) Structures régionales de la chaînepanafricaine du Nord Cameroun. Comptes Rendus de l’Académie des Sciences Paris 315(II):209–215Google Scholar
  73. Nzenti JP, Kapajika B, Wörner G, Lubala TR (2006) Synkinematic emplacement of granitoids in a Pan-African shear zone in Central Cameroon. J Afr Earth Sci 45:74–86CrossRefGoogle Scholar
  74. Nzenti JP, Abaga B, Suh CE, Nzolang C (2011) Petrogenesis of peraluminous magmas from the Akum-Bamenda Massif, Pan-African Fold Belt, Cameroon. Int Geol Rev 53(10):1121–1149CrossRefGoogle Scholar
  75. Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst.  https://doi.org/10.1029/2009GC002618(Q0AA06) Google Scholar
  76. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25(4):956–983CrossRefGoogle Scholar
  77. Peccerillo A, Taylor SR (1976) Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Miner Petrol 58(1):63–81CrossRefGoogle Scholar
  78. Penaye J, Kröner A, Toteu SF, Van Schmus WR, Doumnang JC (2006) Evolution of the Mayo Kebbi region as revealed by zircon dating: an early (c. 740 Ma) Pan-African magmatic arc in southwestern Chad. J Afr Earth Sci 44:530–542CrossRefGoogle Scholar
  79. Pettke T, Audétat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia): part II: evolving zircon and thorite trace element chemistry. Chem Geol 220:191–213CrossRefGoogle Scholar
  80. Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, BerlinCrossRefGoogle Scholar
  81. Polito PA, Kyser TK, Stanley C (2009) The Proterozoic, albitite-hosted, Valhalla uranium deposit, Queensland, Australia: a description of the alteration assemblage associated with uranium mineralization in diamond drill hole V39. Miner Deposita 44:11–40CrossRefGoogle Scholar
  82. Shang CK, Siebel W, Satir M, Chen F, Mvondo JO (2004) Zircon Pb–Pb and U–Pb systematic of TTG rocks in the Congo craton: constraints on crust formation, magmatism and Pan-African lead loss. Bull Geosci 79:205–219Google Scholar
  83. Shang CK, Liégeois JP, Satir M, Frisch W, Nsifa EN (2010) Late Archaean high-K granite geochronology of the northern metacratonic margin of the Archaean Congo craton, Southern Cameroon: evidence for Pb-loss due to non-metamorphic causes. Gondwana Res 18:337–355CrossRefGoogle Scholar
  84. Shu XJ, Wang XL, Sun T, Xu X, Dai MN (2011) Trace elements, U–Pb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China: implications for petrogenesis and W–Sn mineralization. Lithos 127:468–482CrossRefGoogle Scholar
  85. Silver LT, Deutsch S (1963) Uranium–lead isotopic variations in zircons: a case study. Geology 71:721–758CrossRefGoogle Scholar
  86. Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324CrossRefGoogle Scholar
  87. Shand SJ (1943) Eruptive rocks. Their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. Wiley, New YorkGoogle Scholar
  88. Sylvester PJ (1989) Post-collisional alkaline granites. J Geol 97(3):261–280CrossRefGoogle Scholar
  89. Tchameni R, Mezger K, Nsifa NE, Pouclet A (2000) Neoarchean evolution of the Congo craton: evidence from K-rich granitoids of the Ntem Complex, southern Cameroon. J Afr Earth Sci 30:133–147CrossRefGoogle Scholar
  90. Tilton GR (1960) Volume diffusion as a mechanism for discordant lead ages. J Geophys Res 65:2933–2945CrossRefGoogle Scholar
  91. Toteu SF, Van Schmus WR, Penaye J, Michard A (2001) New U–Pb and Sm–Nd data from North-Central Cameroon and its bearing on the pre-Pan-Africanhistory of central Africa. Precambrian Res 108:45–73CrossRefGoogle Scholar
  92. Toteu SF, Penaye J, Poudjom DY (2004) Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Can. J Afr Earth Sci 41:73–85CrossRefGoogle Scholar
  93. Toteu SF, Penaye J, Deloule E, Van Schmus WR, Tchameni R (2006) Diachronous evolution of volcano-sedimentary basins north of the Congo craton: insights from U–Pb ion microprobe dating of zircons from the Poli, Lom and Yaounde Series (Cameroon). J African Earth Sci 44:428–442CrossRefGoogle Scholar
  94. Van Schmus WR, Oliveira EP, da Silva Filho AF, Toteu SF, Penaye J, Guimarães IP (2008) Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. Geol Soc Lond Spec Publ 294:69–99CrossRefGoogle Scholar
  95. Vervoort JD, Kemp AIS (2016) Clarifying the zircon Hf isotope record of crust–mantle evolution. Chem Geol 425:65–75CrossRefGoogle Scholar
  96. Wang XL, Coble MA, Valley JW, Shu XJ, Kitajima K, Spicuzza MJ, Sun T (2014) Influence of radiation damage on Late Jurassic zircon from southern China: evidence from in situ measurements of oxygen isotopes, laser Raman, U–Pb ages, and trace elements. Chem Geol 389:122–136CrossRefGoogle Scholar
  97. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Miner Petrol 151:413–433CrossRefGoogle Scholar
  98. Whitehouse MJ (2003) Rare earth elements in zircon: a review of applications and case studies from the Outer Hebridean Lewisian Complex, NW Scotland. In: Vance D, Müller W, Villa IM (eds) Geochronology: linking the isotopic record with petrology and textures. Geol Soc Spec Pub, LondonGoogle Scholar
  99. Whitehouse MJ, Kamber BS (2002) On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation. Earth Planet Sci Lett 204:333–346CrossRefGoogle Scholar
  100. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadta A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23CrossRefGoogle Scholar
  101. Xia QX, Zheng YF, Hu Z (2010) Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen: implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos 14(3):385–412CrossRefGoogle Scholar
  102. Zhong S, Feng C, Seltmann R, Li D, Qu H (2018) Can magmatic zircon be distinguished from hydrothermal zircon by trace element composition? The effect of mineral inclusions on zircon trace element composition. Lithos.  https://doi.org/10.1016/j.lithos.2018.06.029 Google Scholar

Copyright information

© Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeologyUniversity of BueaBueaCameroon
  2. 2.Ore Treatment LaboratoryInstitute of Geological and Mining Research (IRGM)Yaoundé, NlongkakCameroon
  3. 3.Department of Geology, Mining and Environmental ScienceUniversity of BamendaBambiliCameroon
  4. 4.Department of Earth Sciences and Earth Research Institute, Webb Hall 2028University of CaliforniaSanta BarbaraUSA
  5. 5.Laboratory of Geosciences Natural resources and Environment, Department of Earth Sciences, Faculty of ScienceUniversity of DoualaDoualaCameroon
  6. 6.Department of Civil Engineering, University Institute of TechnologyUniversity of DoualaDoualaCameroon
  7. 7.Departamento de Geologia, IGEOUniversidade Federal do Rio de JaneiroCidade UniversitariaBrazil
  8. 8.Department of Earth and Environmental SciencesBotswana International University of Science and TechnologyPalapyeBotswana
  9. 9.Mineral ResourcesTechnical University of ClausthalClausthal-ZellerfeldGermany

Personalised recommendations