Advertisement

Acta Geochimica

, Volume 38, Issue 5, pp 683–702 | Cite as

Geochemical assessment, mixing behavior and environmental impact of thermal waters in the Guelma geothermal system, Algeria

  • Foued BouaichaEmail author
  • Hénia Dib
  • Oualid Bouteraa
  • Nabil Manchar
  • Kamel Boufaa
  • Nabil Chabour
  • Abdeslam Demdoum
Original Article
  • 56 Downloads

Abstract

A study of thirteen geothermal springs located in the geothermal field of Guelma, northeastern Algeria, was conducted. Samples were collected during the period between January 2014 and February 2016. Geochemical processes responsible for the chemical composition of thermal and mineralized water were evaluated. The hydrochemical analysis shows that the thermal waters are characterized by the presence of two different chemical facies, the first type SO4–Ca in the east, west and south of Guelma, the second type HCO3–Ca in the south. This analysis also attributed to sodium, chlorides, and sulfates to an evaporitic terrigenous origin by the molar ratio Sr2+/Ca2+. The thermal spring waters from Guelma geothermal system have a meteoric origin, and all samples are immature with strong mixing between hot and shallow waters with 19–38.5% rate of mixing. The silica geothermometer shows that these thermal waters have a temperature varying from 84 to 122 °C and that the water came from a depth of 2100–3000 m through a fault system that limits the pull-apart basin of Guelma. Potential environmental effluent from thermal spas could pollute in both the irrigation and drinking waters, and which imposes danger on the health of the inhabitants of the region.

Keywords

Geochemistry Geothermometry Mixing Thermal effluents Guelma Algeria 

References

  1. Abdesselam M, Mania J, Mudry J, Gélard JP, Chauve P, Lami H, Aigoun C (2000) Arguments hydrogéochimiques en faveur de Trias évaporitique non affleurant dans le massif du Djurdjura (dorsale kabyle, élément des Maghrébides). Rev Sci Eau 13:155.  https://doi.org/10.7202/705387ar Google Scholar
  2. Alther GA (1979) A simplified statistical sequence applied to routine water quality analysis: a case history. Ground Water 17:556–561.  https://doi.org/10.1111/j.1745-6584.1979.tb03356.x CrossRefGoogle Scholar
  3. APHA (2005) Standard methods for the examination of water and wastewater, 19thed. American Public Health Association, Washington, DC, pp 1–467Google Scholar
  4. Arnórsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland. II. Mineral equilibria and independent variables controlling water compositions. Geochim Cosmochim Acta 47:547–566.  https://doi.org/10.1016/0016-7037(83)90277-6 CrossRefGoogle Scholar
  5. Aubouin J, Durand-Delga M (1971) Aire méditerranéenne. In Encyclopaedia Universalis, 10, p 743–745. ParisGoogle Scholar
  6. Awaleh MO, Hoch FB, Boschetti T, Soubaneh YD, Egueh NM, Elmi SA, Mohamed J, Khaireh MA (2015) The geothermal resources of the Republic of Djibouti—II: geochemical study of the Lake Abhe geothermal field. J Geochem Explor 159:129–147.  https://doi.org/10.1016/j.gexplo.2015.08.011 CrossRefGoogle Scholar
  7. Awaleh MO, Boschetti T, Soubaneh YD, Baudron P, Kawalieh AD, Dabar OA, Ahmed MM, Ahmed SI, Daoud MA, Egueh NM, Mohamed J (2017) Geochemical study of the Sakalol-Harralol geothermal field (Republic of Djibouti): evidences of a low enthalpy aquifer between Manda-Inakir and Asal rift settings. J Volcanol Geoth Res 331:26–52.  https://doi.org/10.1016/j.jvolgeores.2016.11.008 CrossRefGoogle Scholar
  8. Ayadi Y, Mokadem N, Besser H, Redhaounia B, Khelifi F, Harabi S, Nasri T, Hamed Y (2018) Statistical and geochemical assessment of groundwater quality in Teboursouk area (Northwestern Tunisian Atlas). Environ Earth Sci 77:208.  https://doi.org/10.1007/s12665-018-7523-2 CrossRefGoogle Scholar
  9. Bails J (1888) Les sources thermales et minérales du département d’OranGoogle Scholar
  10. Belhai M, Fujimitsu Y, Bouchareb-Haouchine FZ, Haouchine A, Nishijima J (2016) A hydrochemical study of the Hammam Righa geothermal waters in north-central Algeria. Acta Geochim 35:271–287.  https://doi.org/10.1007/s11631-016-0092-8 CrossRefGoogle Scholar
  11. Belhai M, Fujimitsu Y, Nishijima J, Bersi M (2017) Hydrochemistry and gas geochemistry of the northeastern Algerian geothermal waters. Arab J Geosci 10:743.  https://doi.org/10.1007/s12517-016-2790-2 CrossRefGoogle Scholar
  12. Belhamra A, Hani A (2016) Impact des Néo—Facteurs de Pollution sur la Qualité des Eaux de la Zone Aval de la Vallée de l’Oued Seybouse—Est Algérien = Pollution Néo Factors Impact on Water: Down Part of Oued Seybouse Valley—East of Algeria. Synthèse:30–41.  https://doi.org/10.12816/0027950
  13. Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—a case study: ain Azel plain (Algeria). Geoderma 159:390–398.  https://doi.org/10.1016/j.geoderma.2010.08.016 CrossRefGoogle Scholar
  14. Benamara A, Kherici-Bousnoubra H, Bouabdallah F (2017) Thermo-mineral waters of Hammam Meskoutine (north-east Algeria): composition and origin of mineralization. J Water Land Dev 34:47–57.  https://doi.org/10.1515/jwld-2017-0037 CrossRefGoogle Scholar
  15. Besser H, Mokadem N, Redhaounia B, Hadji R, Hamad A, Hamed Y (2018) Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal field of southwestern Tunisia. Euro-Mediterr J Environ Integr 3:119.  https://doi.org/10.1007/s41207-018-0055-z CrossRefGoogle Scholar
  16. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10:191–203.  https://doi.org/10.1016/0098-3004(84)90020-7 CrossRefGoogle Scholar
  17. Boudoukha A, Athamena M (2012) Caractérisation des eaux thermales de l’ensemble Sud sétifien. Est algérien. Revue des sciences de l’eau 25:103.  https://doi.org/10.7202/1011602ar
  18. Boudoukha A, Belhadj MZ, Benkadja R (2012) Impact d’une pollution anthropique et d’une contamination naturelle sur la qualité des eaux du barrage de Zit Emba. Est algérien. La Houille Blanche 67:34–41.  https://doi.org/10.1051/lhb/2012028 CrossRefGoogle Scholar
  19. Bouri S, Gasmi M, Jaouadi M, Souissi I, Mimi AL, Dhia HB (2007) Etude intégrée des données de surface et de subsurface pour la prospection des bassins hydrogéothermiques: cas du bassin de Maknassy (Tunisie centrale)/Integrated study of surface and subsurface data for prospecting hydrogeothermal basins: case of the Maknassy basin (central Tunisia). Hydrol Sci J 52:1298–1315.  https://doi.org/10.1623/hysj.52.6.1298 CrossRefGoogle Scholar
  20. Boutaleb A, Afalfiz H, Aïssa D, Kolli O, Marignac C, Touahri B (2000) Métallogénie et évolution géodynamique de la chaîne tellienne en Algérie. Bull Serv Géol Algérie 11(1):3–27Google Scholar
  21. Brady PV, Walther JV (1992) Surface chemistry and silicate dissolution at elevated temperatures. Am J Sci 292:639–658.  https://doi.org/10.2475/ajs.292.9.639 CrossRefGoogle Scholar
  22. Brinis N, Boudoukha A, Djabri L, Mania J (2009) La salinité des eaux souterraines de la zone Est de la plaine d’El Outaya. Région de Biskra, Algérie. Bull du Service Géol Natl 20:49–61Google Scholar
  23. Brown CE (ed) (1998) Applied multivariate statistics in geohydrology and related sciences. Springer, BerlinGoogle Scholar
  24. Cai S, Long X, Li L, Liang H, Wang Q, Ding X (2019) Determinants of intention and behavior of low carbon commuting through bicycle-sharing in China. J Clean Prod 212:602–609.  https://doi.org/10.1016/j.jclepro.2018.12.072 CrossRefGoogle Scholar
  25. Can I (2002) A new improved Na/K geothermometer by artificial neural networks. Geothermics 31:751–760.  https://doi.org/10.1016/S0375-6505(02)00044-5 CrossRefGoogle Scholar
  26. Chen C-J, Chen CW, Wu M-M, Kuo T-L (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66:888–892.  https://doi.org/10.1038/bjc.1992.380 CrossRefGoogle Scholar
  27. Chouabi AM (1987) Étude géologique de la région de Hammam N’Baïls (SE de Guelma, Constantinois, Algérie): un secteur des zones externes de la chaîne des Maghrébides. Thèse de 3 cycle, université Toulouse-3Google Scholar
  28. Cormy G, Demians d’Archimbaud J (1970) Les possibilités géothermiques de l’Algérie. Geothermics 2:110–116.  https://doi.org/10.1016/0375-6505(70)90012-X CrossRefGoogle Scholar
  29. CRAAG (2004) Prospection géophysique-etude gravimétrique: Guelaat Bousbaa (Guelma). p 64Google Scholar
  30. Custadio E (1983) Hydrogeoquimica. In: Custado E, Llamas MR (eds) Hydrologia Subterranean, Section 10. Omega, BarcelonaGoogle Scholar
  31. Darest de la Chavane JC (1909) Carte détaillée de l’Algérie à 1:50 000, feuille no 76, Gounod–La Mahouna. Publications du Service de la Carte géologique. Algérie, FranceGoogle Scholar
  32. Darest de la Chavane JC (1910) Recherches géologiques et paléontologiques dans la région de Guelma., Université de Lyon, LyonGoogle Scholar
  33. Dever L (1985) Approches chimiques et Isotopiques des inter-réactions fluide-matrice en zone non saturée carbonatée. Thèse Doct. es. Sci., Univ. Paris VI, pp 196Google Scholar
  34. Dib H (1985) Le thermalisme de l’Est algérien., USTHBGoogle Scholar
  35. Dib H (2008) Guide pratique des sources thermales de l’Est algérien. Mémoires du Service Géologique national, vol 1, Editions du Service Géologique national, AlgerGoogle Scholar
  36. Djemmal S, Menani MR, Chamekh K, Baali F (2017) The contribution of fracturations in the emergence of the thermal springs in Setif city, Eastern Algeria. Carbonates Evaporites 12:141.  https://doi.org/10.1007/s13146-017-0375-0 Google Scholar
  37. Duker AA, Carranza EJM, Hale M (2005a) Spatial relationship between arsenic in drinking water and Mycobacterium ulcerans infection in the Amansie West District. Ghana Miner Mag 69:707–717.  https://doi.org/10.1180/0026461056950282 CrossRefGoogle Scholar
  38. Duker A, Carranza E, Hale M (2005b) Arsenic geochemistry and health. Environ Int 31:631–641.  https://doi.org/10.1016/j.envint.2004.10.020 CrossRefGoogle Scholar
  39. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3:32–57.  https://doi.org/10.1080/01969727308546046 CrossRefGoogle Scholar
  40. Falc G, Bocio A, Gómez-Catalán J, Llobet JM, Domingo JL (2006) Arsenic, cadmium, lead and mercury dietary intake by babies from Catalonia, Spain. An evaluation of risk. Epidemiology 17:S321.  https://doi.org/10.1097/00001648-200611001-00846 CrossRefGoogle Scholar
  41. Farnham IM, Stetzenbach KJ, Singh AK, Johannesson KH (2000) Math Geol 32:943–968.  https://doi.org/10.1023/A:1007522519268 CrossRefGoogle Scholar
  42. Favara R, Grassa F, Inguaggiato S, Valenza M (2001) Hydrogeochemistry and stable isotopes of thermal springs: earthquake-related chemical changes along Belice Fault (Western Sicily). Appl Geochem 16:1–17.  https://doi.org/10.1016/S0883-2927(00)00015-9 CrossRefGoogle Scholar
  43. Foued B, Hénia D, Lazhar B, Nabil M, Nabil C (2017) Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria. J Geol Soc India 90:226–232.  https://doi.org/10.1007/s12594-017-0703-y CrossRefGoogle Scholar
  44. Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50.  https://doi.org/10.1016/0375-6505(77)90007-4 CrossRefGoogle Scholar
  45. Fournier RO (1979) A revised equation for the NA/K geothermometer. Trans Geotherm Resour Council 3:221–224Google Scholar
  46. Fournier RO (1992) Water geothermometers applied to geothermal ener. In: D’Amore F (ed) Application of geochemistry in geothermal reservoir development. UNITAR/UNDP, Vial del Corso, Italy, pp 37–69Google Scholar
  47. Fournier RO, Potter RW (1982) A revised and expanded silica (quartz) geothermometer. Geotherm Resour Council Bull 11:3–12Google Scholar
  48. Frapporti G, Vriend SP, van Duijvenbooden W (1993) Hydrogeochemistry of Dutch groundwater: classification into natural homogeneous groupings with fuzzy c-means clustering. Appl Geochem 8:273–276.  https://doi.org/10.1016/S0883-2927(09)80049-8 CrossRefGoogle Scholar
  49. Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765.  https://doi.org/10.1016/0016-7037(88)90143-3 CrossRefGoogle Scholar
  50. Giggenbach WF, Soto RC (1992) Isotopic and chemical composition of water and steam discharges from volcanic-magmatic-hydrothermal systems of the Guanacaste Geothermal Province, Costa Rica. Appl Geochem 7:309–332.  https://doi.org/10.1016/0883-2927(92)90022-U CrossRefGoogle Scholar
  51. Gouaidia L, Guefaifia O, Boudoukha A, LaidHemila M, Martin C (2012) Évaluation de la salinité des eaux souterraines utilisées en irrigation et risques de dégradation des sols: Exemple de la plaine de Meskiana (Nord-Est Algérien). Physio-Geo 141–160.  https://doi.org/10.4000/physio-geo.2632
  52. Grande JA, Carro B, Borrego J, de La Torre ML, Santisteban M (2013) Hydrogeochemical variables regionalization: applying cluster analysis for a seasonal evolution model from an estuarine system affected by AMD. Mar Pollut Bull 69:150–156.  https://doi.org/10.1016/j.marpolbul.2013.01.022 CrossRefGoogle Scholar
  53. Guigue S (ed) (1940) Les sources thermominérales de l’Algérie., Tome I. Serv. Carte Géol. De l’Algérie., Algerie. 3ème série, 5ème fascGoogle Scholar
  54. Guigue S (ed) (1947) Les sources thermominérales de l’Algérie., Tome II. Serv. Carte Géol. De l’Algérie., Algerie. 3ème série, 9ème fascGoogle Scholar
  55. Güler C, Thyne GD (2004) Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c-means clustering. Water Resour Res 40:193.  https://doi.org/10.1029/2004WR003299 CrossRefGoogle Scholar
  56. Güler C, Thyne GD, McCray JE, Turner KA (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474.  https://doi.org/10.1007/s10040-002-0196-6 CrossRefGoogle Scholar
  57. Hamad A, Baali F, Hadji R, Zerrouki H, Besser H, Mokadem N, Legrioui R, Hamed Y (2018) Hydrogeochemical characterization of water mineralization in Tebessa-Kasserine karst system (Tuniso-Algerian Transboundry basin). Euro-Mediterr J Environ Integr 3:721.  https://doi.org/10.1007/s41207-017-0045-6 CrossRefGoogle Scholar
  58. Han DM, Liang X, Jin MG, Currell MJ, Song XF, Liu CM (2010) Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin. J Volcanol Geoth Res 189:92–104.  https://doi.org/10.1016/j.jvolgeores.2009.10.011 CrossRefGoogle Scholar
  59. Haouchine-Bouchareb FZ (2012) Etude hydrogéochimique des sources thermales de l’Algérie du Nord. Potentialités géothermiques. Thèse doc. d’état. FSTGAT-USTHB. Alger. Algérie, p 135Google Scholar
  60. Haut Conseil de la santé publique (2017) Mise à jour du guide pratique de dépistage et de prise en charge des expositions au plomb chez l’enfant mineur et la femme enceinte. FranceGoogle Scholar
  61. Helena B (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34:807–816.  https://doi.org/10.1016/S0043-1354(99)00225-0 CrossRefGoogle Scholar
  62. Hem J (1985) Study and interpretation of the chemical characteristics of natural water. US Geol Sur Water, Washington, p 57Google Scholar
  63. Hsissou Y, Chauve P, Mania J, Mangin A, Bakalowicz M, Gaiz A (1996) Caractérisation des eaux de l’aquifère turonien du bassin du Tadla (Maroc) par le rapport des concentrations molaires. J Hydrol 183:445–451.  https://doi.org/10.1016/0022-1694(95)03009-3 CrossRefGoogle Scholar
  64. Issaâdi A (1992) Le thermalisme dans son cadre géostructural. Apports à la connaissance de l’Algérie profonde et de ressource géothermales. Thèse doc. d’état. FSTGAT-USTHB. Alger. Algérie, p 267Google Scholar
  65. Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151.  https://doi.org/10.1177/001316446002000116 CrossRefGoogle Scholar
  66. Khelif S, Boudoukha A (2018) Multivariate statistical characterization of groundwater quality in Fesdis, East of Algeria. J Water Land Dev 37:65–74.  https://doi.org/10.2478/jwld-2018-0026 CrossRefGoogle Scholar
  67. Lahondère JC (1987) Les séries ultratelliennes d’algérie Nord-orientale et les formations environnantes dans leur cadre structural. Université Paul-Sabatier, Toulouse, p 242Google Scholar
  68. Laissoub B (1974) Etude des eaux minérales, thermales et thermominérales en oranie. Thèse de doctorat, No. 34. Institut des sciences médicales. Oran, OranGoogle Scholar
  69. Liu C-W, Lin K-H, Kuo Y-M (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313:77–89.  https://doi.org/10.1016/S0048-9697(02)00683-6 CrossRefGoogle Scholar
  70. Long X, Chen Y, Du J, Oh K, Han I (2017a) Environmental innovation and its impact on economic and environmental performance: evidence from Korean-owned firms in China. Energy Pol 107:131–137.  https://doi.org/10.1016/j.enpol.2017.04.044 CrossRefGoogle Scholar
  71. Long X, Chen Y, Du J, Oh K, Han I, Yan J (2017b) The effect of environmental innovation behavior on economic and environmental performance of 182 Chinese firms. J Clean Prod 166:1274–1282.  https://doi.org/10.1016/j.jclepro.2017.08.070 CrossRefGoogle Scholar
  72. Long X, Wu C, Zhang J, Zhang J (2018) Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: a metafrontier directional slacks-based measure approach. Renew Sustain Energy Rev 82:3962–3971.  https://doi.org/10.1016/j.rser.2017.10.077 CrossRefGoogle Scholar
  73. Maouche S, Abtout A, Merabet N-E, Aïfa T, Lamali A, Bouyahiaoui B, Bougchiche S, Ayache M (2013) Tectonic and hydrothermal activities in Debagh, Guelma Basin (Algeria). J Geol Res 2013:1–13.  https://doi.org/10.1155/2013/409475 Google Scholar
  74. Merdas B (2006) Contribution à l’étude géologique et gîtologique des minéralisations de la région de Hammam N’bails (Nord Est algérien).Mémoir. Magister, USTHB (FSTGAT), Alger. AlgérieGoogle Scholar
  75. Meybek M (1984) Les fleuves et le cycle géochimique des. Doctorat d’état, Univ. Paris VIGoogle Scholar
  76. Milton AH, Hasan Z, Rahman A, Rahman M (2001) Chronic arsenic poisoning and respiratory effects in Bangladesh. J Occup Health 43:136–140.  https://doi.org/10.1539/joh.43.136 CrossRefGoogle Scholar
  77. Mohammadrezapour O, Kisi O, Pourahmad F (2018) Fuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater quality. Neural Comput Appl 27:136.  https://doi.org/10.1007/s00521-018-3768-7 Google Scholar
  78. Mroczek EK (2005) Contributions of arsenic and chloride from the Kawerau geothermal field to the Tarawera River, New Zealand. Geothermics 34:218–233.  https://doi.org/10.1016/j.geothermics.2004.06.004 CrossRefGoogle Scholar
  79. Mustapha A, Aris AZ (2012) Multivariate statistical analysis and environmental modeling of heavy metals pollution by industries. Pol J Environ Stud 21(5):1359–1367Google Scholar
  80. Mutlu H (1998) Chemical geothermometry and fluid–mineral equilibria for the Ömer-Gecek thermal waters, Afyon area, Turkey. J Volcanol Geoth Res 80:303–321.  https://doi.org/10.1016/S0377-0273(97)00051-6 CrossRefGoogle Scholar
  81. Nieva D, Nieva R (1987) Developments in geothermal energy in Mexico—part twelve. A cationic geothermometer for prospecting of geothermal resources. Heat Recover Syst CHP 7:243–258.  https://doi.org/10.1016/0890-4332(87)90138-4 CrossRefGoogle Scholar
  82. Ouali S (2015) Contribution à l’étude de quelques réservoirs géothermique en Algérie., FSTGAT/USTHBGoogle Scholar
  83. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans AGU 25:914.  https://doi.org/10.1029/TR025i006p00914 CrossRefGoogle Scholar
  84. Pouget I, Chouchak D (1923) Radioactivité des eaux minérales du département de ConstantineGoogle Scholar
  85. Pouget I, Chouchak D (1926) Radioactivit des eaux minérales du département d’Oran (Ibid., XIV, pp 347–360)Google Scholar
  86. Raoult JF (1974) Géologie du centre de la chaîne nummidique (nord du constantinois, Algérie). Thèse sciences, Paris (France), Mém. Soc Géol. Fr. nouv. Série, no. 121Google Scholar
  87. Rezig M (1991) Etude géothermique du Nord Est de l’Algérie. Université Montpellier II Sciences et Techniques du Languedoc, MontpellierGoogle Scholar
  88. Rimi A, Chalouan A, Bahi L (1998) Heat flow in the westernmost part of the Alpine Mediterranean system (the Rif, Morocco). Tectonophysics 285:135–146.  https://doi.org/10.1016/S0040-1951(97)00185-6 CrossRefGoogle Scholar
  89. Robinson B, Duwig C, Bolan N, Kannathasan M, Saravanan A (2003) Uptake of arsenic by New Zealand watercress (Lepidium sativum). Sci Total Environ 301:67–73.  https://doi.org/10.1016/S0048-9697(02)00294-2 CrossRefGoogle Scholar
  90. Saibi H (2009) Geothermal resources in Algeria. Renew Sustain Energy Rev 13:2544–2552.  https://doi.org/10.1016/j.rser.2009.06.019 CrossRefGoogle Scholar
  91. Schaefer K, Einax J (2010) Analytical and chemometric characterization of the Cruces River in South Chile. Environ Sci Pollut Res 17(1):115–123CrossRefGoogle Scholar
  92. Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568.  https://doi.org/10.1016/S0883-2927(02)00018-5 CrossRefGoogle Scholar
  93. Smith AH, Goycolea M, Biggs ML, Haque R (1996) Marked increase in bladder and lung cancer mortality in an arsenic exposed region in northern Chile. Epidemiology 7:S84.  https://doi.org/10.1097/00001648-199607001-00264 CrossRefGoogle Scholar
  94. Thomas D (1988) Geochemical precursors to seismic activity. PAGEOPH 126:241–266.  https://doi.org/10.1007/BF00878998 CrossRefGoogle Scholar
  95. Tonani FB (1980) Some remarks on the application of geochemical techniques in geothermal exploration. In: Strub AS, Ungemach P (eds) Advances in European geothermal research. Springer, Netherlands, pp 428–443CrossRefGoogle Scholar
  96. Tondel M, Rahman M, Magnuson A, Chowdhury IA, Faruquee MH, Ahmad SA (1999) The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect 107:727–729.  https://doi.org/10.1289/ehp.99107727 CrossRefGoogle Scholar
  97. Truesdell AH (1975) Summary of section III geochemical techniques in exploration. Second United Nations symposium on the development and use of geothermal resources, vol 1, San Francisco, US Government Printing Office, Washington, pp liii–lxiiiGoogle Scholar
  98. Truesdell A, Fournier R (1977) Procedure for estimating the temperature of a hot water component in a mixed water using a plot of dissolved silica vs. enthalpy. U.S. Geol Surv J Res 5:49–52Google Scholar
  99. Verdeil P (ed) (1974) Carte 1/50000 des eaux minérales, thermales et thermominérales de l’AlgérieGoogle Scholar
  100. Verdeil P (1982) Algerian thermalism in its geostructural setting—How hydrogeology has helped in the elucidation of Algeria’s deep-seated structure. J Hydrol 56:107–117.  https://doi.org/10.1016/0022-1694(82)90060-9 CrossRefGoogle Scholar
  101. Verma MP (2000a) Limitations in applying silica geothermometers from geothermal reservoir evaluation. In: Proceedings of the 25th Workshop on geothermal reservoir engineering, Stanford University, Stanford, SGP-TR-165Google Scholar
  102. Verma MP (2000b) Limitations in applying silica geothermometers from geothermal reservoir evaluation. In: Proceedings, the 25th workshop on geothermal reservoir engineering, Stanford University, Stanford, SGP-TR-165Google Scholar
  103. Vila JM (1980) La chaine alpine d’Algérie orientale et des confins algérotunisiens. Thèse doctorat, univ de Pierre et Marie Curie, vol 2, Paris VI. France. p 665Google Scholar
  104. Ville M (1852) Recherche sur les roches, les eaux et les gites minéraux des provinces d’oran et d’AlgerGoogle Scholar
  105. Wakita H, Nakamura Y, Sano Y (1985) Groundwater radon variations reflecting changes in regional stress fields. In: Kisslinger C, Rikitake T (eds) Practical approaches to earthquake prediction and warning. Springer, Netherlands, pp 545–557CrossRefGoogle Scholar
  106. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236.  https://doi.org/10.2307/2282967 CrossRefGoogle Scholar
  107. Webster JG (1999) The source of arsenic (and other elements) in theMarbel–Matingao river catchment, Mindanao, Philippines. Geothermics 28:95–111.  https://doi.org/10.1016/S0375-6505(98)00046-7 CrossRefGoogle Scholar
  108. WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, GenevaGoogle Scholar
  109. Wildi W (1983) La chaine tello-rifaine (Algérie, Maroc, Tunisie): structure, Strati-Graphie et évolution du Trias au Miocène. Rev Géol Dynam Géog Phys 24:201–297Google Scholar
  110. Yazdi M, Taheri M, Navi P (2015) Environmental geochemistry and sources of natural arsenic in the Kharaqan hot springs, Qazvin, Iran. Environ Earth Sci 73:5395–5404.  https://doi.org/10.1007/s12665-014-3794-4 CrossRefGoogle Scholar
  111. Yelles-Chaouche A, Boudiaf A, Djellit H, Bracene R (2006) La tectonique active de la région nord-algérienne. CR Geosci 338:126–139.  https://doi.org/10.1016/j.crte.2005.11.002 CrossRefGoogle Scholar
  112. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353.  https://doi.org/10.1016/S0019-9958(65)90241-X CrossRefGoogle Scholar

Copyright information

© Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied BiologyUniversité des Frères Mentouri Constantine 1ConstantineAlgeria
  2. 2.Department of GeologyUniversité des Frères Mentouri Constantine 1ConstantineAlgeria
  3. 3.Laboratory of Geology and Environment (LGE)Université des Frères Mentouri Constantine 1ConstantineAlgeria
  4. 4.Department of Geology SciencesUniversity of Larbi Ben M’hidiOum El BouaghiAlgeria
  5. 5.Department of Earth SciencesUniversity of Setif 1SétifAlgeria

Personalised recommendations