Acta Geochimica

, Volume 38, Issue 5, pp 718–733 | Cite as

A review of geoanalytical databases

  • Yutong He
  • Yang Bai
  • Di TianEmail author
  • Li YaoEmail author
  • Runlong Fan
  • Pengfei Chen
Original Article


Geoanalytical data provide fundamental information according to which the Earth’s resources can be known and exploited to support human life and development. Large amounts of manpower and material and financial resources have been invested to acquire a wealth of geoanalytical data over the past 40 years. However, these data are usually managed by individual researchers and are preserved in an ad hoc manner without metadata that provide the necessary context for interpretation and data integration requirements. In this scenario, fewer data, except for published data, can be reutilized by geological researchers. Many geoanalytical databases have been constructed to collect existing data and to facilitate their use. These databases are useful tools for preserving, managing, and sharing data for geological research, and provide various data repositories to support geological studies. Since these databases are dispersed and diverse, it is difficult for researchers to make full use of them. This contribution provides an introduction on available geoanalytical databases. The database content can be made accessible to researchers, the ways in which this can be done, and the functionalities that can be used are illustrated in detail. Moreover, constraints that have limited the reutilization of geoanalytical data and creation of more advanced geoanalytical databases are discussed.


Database Geochemistry Geology Geoanalysis Information system 



This work was supported by “Instrument Equipment and superior resources sharing of high school” of China (“211” program, Grant No. CERS-2-9), CGS research fund (JYYWF20181702), National Major Scientific Instruments and Equipment Development Special Funds (No. 2016YFF0103303).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agrawal S, Verma SP (2007) Comment on “Tectonic classification of basalts with classification trees” by Pieter Vermeesch (2006). Geochim Cosmochim Acta 71(13):3388–3390Google Scholar
  2. Ahlsved C, Lampio E, Tarvainen T (1991) ALKEMIA—a VAX minicomputer database and program package for geochemical exploration. J Geochem Explor 41(1–2):23–28Google Scholar
  3. Ariskin AA, Barmina GS, Meshalkin SS, Nikolaev GS, Almeev RR (1996) INFOREX-3.0: a database on experimental studies of phase equilibria in igneous rocks and synthetic systems: II. Data description and petrological applications. Comput Geosci 22(10):1073–1082Google Scholar
  4. Artioli G, Angelini I, Nimis P, Villa IM (2016) A lead-isotope database of copper ores from the Southeastern Alps: a tool for the investigation of prehistoric copper metallurgy. J Archaeol Sci 75:27–39Google Scholar
  5. Axel S, Ingolf D (2016) A database system for geochemical, isotope hydrological, and geochronological laboratories. Radiocarbon 43(2A):325–337Google Scholar
  6. Becker T, Goscombe B (2004) The geochronological database of Namibia. Communs Geol Surv Namibia 13(2004):103–106.
  7. Brandl PA, Regelous M, Beier C, Haase KM (2013) High mantle temperatures following rifting caused by continental insulation. Nat Geosci 6(5):391–394Google Scholar
  8. Brändle JL, Nagy G (1995) The state of the 5th version of IGBA: igneous petrological data base. Comput Geosci 21(3):425–432Google Scholar
  9. Bray EAD, Ressel MW, Barnes CG (2007) Geochemical database for intrusive rocks of north-central and northeast Nevada. Center for Integrated Data Analytics Wisconsin Science Center, WisconsinGoogle Scholar
  10. Budd AR, Hazell MS, Sedgmen A, Sedgmen L, Wyborn LAI, Ryburn R (2000) OZCHEM dataset release 1 documentation: AGSO’s national whole rock geochemistry database. Australian Geological Survey Organisation.
  11. Cai J, Liu D (2002) Chinese geochronologic database in the chinese geo-science database system. Geol Rev 48(Suppl):294–297Google Scholar
  12. Carbotte SM, Marjanović M, Carton H, Mutter JC, Canales JP, Nedimović MR, Han S, Perfit MR (2013) Fine-scale segmentation of the crustal magma reservoir beneath the East Pacific Rise. Nat Geosci 6(10):866–870Google Scholar
  13. Carr MJ, Feigenson MD, Bolge LL, Walker JA, Gazel E (2014) RU_CAGeochem, a database and sample repository for Central American volcanic rocks at Rutgers University. Geosci Data J 1(1):43–48Google Scholar
  14. Champion DC, Budd AR, Hazell MS, Sedgmen A (2007) OZCHEM national whole rock geochemistry dataset. Geoscience Australia, SymonstonGoogle Scholar
  15. Cheng H, Zhou H, Yang Q, Zhang L, Ji F, Henry D (2016) Jurassic zircons from the Southwest Indian Ridge. Sci Rep 6:26260Google Scholar
  16. Church SE (2010) Lead isotope database of unpublished results from sulfide mineral occurrences—California. U.S. Geological Survey, OregonGoogle Scholar
  17. Cottrell E, Kelley KA (2013) Redox heterogeneity in mid-ocean ridge basalts as a function of mantle source. Science 340(6138):1314Google Scholar
  18. Dick HJB, Zhou H (2014) Ocean rises are products of variable mantle composition, temperature and focused melting. Nat Geosci 8(1):68–74Google Scholar
  19. Eglington BM (2004) DateView: a windows geochronology database. Comput Geosci 30(8):847–858Google Scholar
  20. Fitzgibbon TT (1987) User’s manual for REFORM; a rock-sample database program in FORTRAN-77. U.S. Geological Survey, OregonGoogle Scholar
  21. Greber ND, Dauphas N, Bekker A, Ptáček MP, Bindeman IN, Hofmann A (2017) Titanium isotopic evidence for felsic crust and plate tectonics 35 billion years ago. Science 357(6357):1271–1274Google Scholar
  22. Hall GEM (1996) Twenty-five years in geoanalysis, 1970–1995 (Presidential Address at 17th IGES in Townsville, Australia, May 15, 1995). J Geochem Explor 57(1):1–8Google Scholar
  23. Hazell MS, Kilgour B, Wyborn LAI, Sheraton JW, Ryburn RJ (1995) ROCKCHEM dataset version 2 documentation: AGSO’s national whole rock geochemistry database. Australian Geological Survey Organisation 1995/026.
  24. Helo C, Longpr MA, Shimizu N, Clague DA, Stix J (2011) Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nat Geosci 4(4):260–263Google Scholar
  25. Hoernle K, Hauff F, Werner R, Bogaard PVD, Gibbons AD, Conrad S, Müller RD (2011) Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere. Nat Geosci 4(12):883–887Google Scholar
  26. Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29(3):333–338Google Scholar
  27. Johnson EA (2012) A petrographic and geochemical database for countertops as a teaching resource.Google Scholar
  28. Joy KH, Zolensky ME, Nagashima K, Huss GR, Ross DK, McKay DS, Kring DA (2012) Direct detection of projectile relics from the end of the lunar basin-forming epoch. Science 336(6087):1426Google Scholar
  29. Kamenov GD, Perfit MR, Lewis JF, Goss AR, Arévalo R Jr, Shuster RD (2011) Ancient lithospheric source for Quaternary lavas in Hispaniola. Nat Geosci 4(8):554–557Google Scholar
  30. Kelley KA (2014) Inside earth runs hot and cold. Science 344(6179):51–52Google Scholar
  31. Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607Google Scholar
  32. Key RM, Waele BD, Liyungu AK (2013) A multi-element baseline geochemical database from the western extension of the Central Africa Copperbelt in northwestern Zambia. Appl Earth Sci IMM Trans 113:3Google Scholar
  33. Klein TL, Evans KV, Dewitt EH (2010) Geochronology database for central Colorado. US Geol Surv Data Ser 2009:489Google Scholar
  34. Le Bas MJ, Rex DC, Stillman CJ (1986) The early magmatic chronology of Fuerteventura, Canary Islands. Geol Mag 123(03):287Google Scholar
  35. Lehnert K (2001) PETDB—the interactive web-based petrological database of the ocean floor. GSA Annual Meeting, November 5–8, 2001.
  36. Lehnert KA, Goldstein SL, Murray RW, Pisias NG (2005) SedDB—Next generation data management for marine sediment geochemistry.
  37. Lightfoot PC (1993) Interpretation of geoanalytical dataGoogle Scholar
  38. Liu RM, Xuan WU, Xiang YC, Geng YT (2012) China national multi-purpose geochemical database development and application prospect. Geoscience 26(5):989–995Google Scholar
  39. Liu X, Zhang Q, Zhang C (2017) A discussion on the tectonic setting of global Cenozoic andesite. Sci Geol Sin 52(3):649–667Google Scholar
  40. Lopes C, Ferreira A, Chichorro M, Pereira MF, Almeida JA, Sol AR (2014) Chroniberia: the ongoing development of a geochronological GIS database of Iberia. Springer, BerlinGoogle Scholar
  41. Mackley RD, Last GV, Serkowski JA, Middleton LA, Cantrell KJ (2010) MinChem: a prototype petrologic database for Hanford site sediments. Office of Scientific and Technical Information Technical ReportsGoogle Scholar
  42. Maitre RL, Chayes F (1985) Decoding IGBADAT, a world data base for igneous petrology. Pergamon Press Inc, OxfordGoogle Scholar
  43. Mcintosh WC (1998) Sanidine, single crystal, laser-fusion 40 Ar f9 Ar Geochronology Database for the Superstition Volcanic Field, Central Arizona, Arizona Geological Survey open-file report, pp 98–27Google Scholar
  44. McNutt MK, Lehnert K, Hanson B, Nosek BA (2016) Liberating field science samples and data. Science 351(6277):1024Google Scholar
  45. Meshalkin SS, Ariskin AA (1996) INFOREX-3.0: a database on experimental studies of phase equilibria in igneous rocks and synthetic systems: I. Datafile and management system structure. Comput Geosci 22(10):1061–1071Google Scholar
  46. Otton JK, Breit GN, Kharaka YK, Rice CA (2002) A national produced-water geochemistry database.
  47. Page RW, Black LP, Sun SS, Kilgour B, Hazell MS, Wyborn LAI, Ryburn RJ (2007) AGSO’s national geochronology database of Australia: OZCHRON dataset documentation. MMW Fortschritte Der Medizin 149(149):17Google Scholar
  48. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Pet 25(4):956–983Google Scholar
  49. Potts P (2000) The development of geoanalytical techniques: a historical perspective. Actas Inageq 6(1):1–9Google Scholar
  50. Rasilainen K, Lahtinen R, Bornhorst TJ (2007) The rock geochemistry database of Finland—a new tool for large scale exploration and crustal studies. In: Andrew CJ et al. (eds) Digging deeper. Ninth biennial meeting of the Society for Geology Applied to Mineral Deposits, Dublin, Ireland, 20th–23rd August 2007, pp 1267–1270.
  51. Samuel H, King SD (2014) Mixing at mid-ocean ridges controlled by small-scale convection and plate motion. Nat Geosci 7(8):602–605Google Scholar
  52. Santiago DSF, Bernard B, Hidalgo S (2016) Ecuadorian volcanic events and geochronological database: insight into to the complex eruptive rate of a continental volcanic arc.
  53. Sarbas B, Nohl U (2009) The GEOROC database—a decade of “online geochemistry”. Geochim Cosmochim Acta Suppl 73(13):A1158Google Scholar
  54. Scheib AJ (2013) The National Geochemical Survey of Australia—selected interpretations for western Australian data.
  55. Schlindwein V, Schmid F (2016) Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature 535:7611Google Scholar
  56. Shields G, Veizer J (2002) Precambrian marine carbonate isotope database. Geochem Geophys Geosyst 3(6):1–12Google Scholar
  57. Siegel C, Bryan SE, Purdy D, Gust D, Allen C, Uysal T, Champion D (2012) A new database compilation of whole-rock chemical and geochronological data of igneous rocks in Queensland: a new resource for HDR geothermal resource exploration. In: Proceedings of the 2011 Australian Geothermal Energy Conference, Geoscience Australia, Sydney, pp 239–244.
  58. Siewers U (1994) The geochemical atlas of Finland—Part 2: Till: T. Koljonen (editor). Geological Survey of Finland, Espoo, 1992, 218 pp, ISBN 951-690-379-7 (hardcover). Chem Geol 113:377–378Google Scholar
  59. Silva LCD, Rodrigues JB, Silveira LMC, Pimentel MM (2003) The Brazilian National Geochronological Database: Chronobank.
  60. Sloan J, Henry CD, Hopkins M, Ludington S, Zartman RE, Bush CA, Abston C (2003) National Geochronological Database. Center for Integrated Data Analytics Wisconsin Science Center, WisconsinGoogle Scholar
  61. Smith SM (2010) The US Geological Survey S National Geochemical Database. Curr Issues Lang Soc 6(2):103–120Google Scholar
  62. Smith DB, Cannon WF, Woodruff LG, Solano F, Kilburn JE, Fey DL (2013) Geochemical and mineralogical data for soils of the conterminous United States. Center for Integrated Data Analytics Wisconsin Science Center, WisconsinGoogle Scholar
  63. Steinhauser G, Sterba JH, Bichler M, Huber H (2006) Neutron activation analysis of Mediterranean volcanic rocks—an analytical database for archaeological stratigraphy. Appl Geochem 21(8):1362–1375Google Scholar
  64. Straub SM, Goldstein SL, Class C, Schmidt A (2009) Mid-ocean-ridge basalt of Indian type in the northwest Pacific Ocean basin. Nat Geosci 2(4):286–289Google Scholar
  65. Strong DT, Turnbull RE, Haubrock S, Mortimer N (2016) Petlab: New Zealand’s national rock catalogue and geoanalytical database. NZ J Geol Geophys 3:1–7Google Scholar
  66. Tarvainen T, Reeder S, Albanese S (2003) Database management and map production. Geochem Atlas Eur Part 1:526Google Scholar
  67. Thieblemont D, Marcoux E, Tegyey M, Leistel JM (1994) Genese de la province pyriteuse sud-iberique dans un paleo-prisme d’accretion? Arguments petrologiques. Bull Soc Geol Fr 5:407–423Google Scholar
  68. Torley R, McBirney A (2002) Short note: potentialities of a neglected igneous database IGBADAT5. Nat Resour Res 11(1):71–75Google Scholar
  69. Verma SP, Quiroz-Ruiz A (2016) Log-ratio transformed major element based multidimensional classification for altered high-Mg igneous rocks. Geochem Geophys Geosyst 17:12Google Scholar
  70. Verma SP, Rivera-Gomez MA (2013) Computer programs for the classification and nomenclature of igneous rocks. Episodes 36(2):115–124Google Scholar
  71. Vermeesch P (2013) Tectonic discrimination diagrams revisited. Geochem Geophys Geosyst 7(6):1–55Google Scholar
  72. JD (2004) Creation of a North American Volcanic and Plutonic Rock Database (NAVDAT)Google Scholar
  73. JD (2013a) The Geochron System for sharing and archiving geochronology data: new advances in data managementGoogle Scholar
  74. JD (2013b) The Geochron System for sharing and archiving geochronology data: new advances in data managementGoogle Scholar
  75. JD, Todd DB, Ross AB, Allen FG, Farmer GL, Richard WC (2006) NAVDAT: a western North American volcanic and intrusive rock geochemical database. Special paper of the Geological Society of America, vol 397Google Scholar
  76. Walker JD, Bowring JF, Mclean N, Ash J (2016) The Geochron Database.
  77. Wang Y, Wang X, Gao Y (2001) The review and prospect on geoanalysis. Chin J Anal Chem 29(7):845–851Google Scholar
  78. Wang J, Chen W, Zhang Q, Jiao S, Yang J, Pan Z, Wang S, Wang J, Chen W, Zhang Q (2017a) Preliminary research on data mining of N-Morb and E-MORB: discussion on method of the basalt discrimination diagrams and the character of MORB’s mantle source. Acta Petrol Sin 33(3):993–1005Google Scholar
  79. Wang X, Xu J, Liu M, Wei Z, Bu W, Hong T (2017b) An ontology-based approach for marine geochemical data interoperation. IEEE Access 99:1Google Scholar
  80. Wolfson-Schwehr M, Boettcher MS, Behn MD (2017) Thermal segmentation of mid-ocean ridge-transform faults. Geochem Geophys Geosyst 18(9):993–1005Google Scholar
  81. Yachi Y, Kitagawa H, Kunihiro T, Nakamura E (2014) Software dedicated for the curation of geochemical data sets in analytical laboratories. Geostand Geoanal Res 38(1):95–102Google Scholar
  82. Yager DB, Hofstra AH, Fifarek K, Webbers A (2010) Development of an igneous rock database with geologic functions: application to Neogene bimodal igneous rocks and mineral resources in the Great Basin. Geosphere 6(5):691–730Google Scholar
  83. Yin M (2009) Progress and prospect on geoanalytical techniques in China. Rock Miner Anal 28(1):37–52Google Scholar
  84. Zalduegui JFS, Madinabeitia SGD, Ibarguchi JIG, Palero F (2004) A lead isotope database: the Los Pedroches—Alcudia area (Spain); Implications for archaeometallurgical connections across southwestern and southeastern Iberia. Archaeometry 46(4):625–634Google Scholar
  85. Zhang H, Zhu Y (2017) Geochronology and geochemistry of the Huilvshan gabbro in west Junggar (NW China): implications for magma process and tectonic regime. Mineral Petrol 7–8:1–19Google Scholar
  86. Zhang H, Yang Y, Yan Q, Shi X, Zhu Z, Su W, Qin C, Ye J (2016) Ca/Al ratio of plagioclase-hosted melt inclusions as an indicator for magmatic processes at mid-oceanic ridge? Bull Mineral Petrol Geochem 35(2):387–398Google Scholar
  87. Zhang GL, Chen LH, Jackson MG, Hofmann AW (2017) Evolution of carbonated melt to alkali basalt in the South China Sea. Nat Geosci 10:3Google Scholar

Copyright information

© Science Press and Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Instrumentation and Electrical EngineeringJilin UniversityChangchunChina
  2. 2.College of Earth SciencesJilin UniversityChangchunChina
  3. 3.Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  4. 4.The 41st Research Institute CETCQingdaoChina

Personalised recommendations