Advertisement

Journal of Thermal Science

, Volume 27, Issue 4, pp 321–330 | Cite as

Optimization of Dimples in Microchannel Heat Sink with Impinging Jets—Part B: the Influences of Dimple Height and Arrangement

  • Tingzhen Ming
  • Cunjin Cai
  • Wei Yang
  • Wenqing Shen
  • Wei Feng
  • Nan Zhou
Article
  • 42 Downloads

Abstract

The combination of a microchannel heat sink with impinging jets and dimples (MHSIJD) can effectively improve the flow and heat transfer performance on the cooling surface of electronic devices with very high heat fluxes. Based on the previous work by analysing the effect of dimple radius on the overall performance of MHSIJD, the effects of dimple height and arrangement were numerically analysed. The velocity distribution, pressure drop, and thermal performance of MHSIJD under various dimple heights and arrangements were presented. The results showed that: MHSIJD with higher dimples had better overall performance with dimple radius being fixed; creating a mismatch between the impinging hole and dimple can solve the issue caused by the drift phenomenon; the mismatch between the impinging hole and dimple did not exhibit better overall performance than a well-matched design.

Keywords

microchannel with impinging jets and dimples impinging jet dimple heat transfer enhancement thermal resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Guo Z.Y., Li D.Y., Wang B.X... A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer. 1998, 41(14): 2221–2225.CrossRefMATHGoogle Scholar
  2. [2]
    Liu W., Liu Z.C., Ma L. Application of a multi-field synergy principle in the performance evaluation of convective heat transfer enhancement in a tube. Science Bulletin. 2012, 57(13): 1600–1607.ADSCrossRefGoogle Scholar
  3. [3]
    Wei L., Liu Z.C., Guo Z.Y. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement. Science Bulletin. 2009, 54(19): 3579–3586.CrossRefGoogle Scholar
  4. [4]
    Guo Z.Y, Tao W.Q., Shah R. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. International Journal of Heat and Mass Transfer. 2005. 48(9): 1797–1807.CrossRefMATHGoogle Scholar
  5. [5]
    Liu X., Meng J., Guo Z. Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization. Chinese Science Bulletin. 2009, 54(6): 943–947.Google Scholar
  6. [6]
    Szwaba R., Kaczynski P., Telega J., Doerffer P. Influenceof internal channel geometry of gas turbine blade on flow structure and heat transfer. Journal of Thermal Science. 2017, 26(6): 514–522.ADSCrossRefGoogle Scholar
  7. [7]
    An Z., Jia L., Ding Y., Dang C., Li X. A review on lithi-um-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science. 2017, 26(5): 391 12.ADSCrossRefGoogle Scholar
  8. [8]
    Qin J., Ning D., Feng Y, Zhang J., Feng S., Bao W. A new method of thermal protection by opposing jet for a hypersonic aeroheating strut. Journal of Thermal Science. 2017, 26(3): 282–288.ADSCrossRefGoogle Scholar
  9. [9]
    Guo C., Nian X., Liu Y, Qi C., Song J., Yu W. Analysis of 2D flow and heat transfer modeling in fracture of porous media. Journal of Thermal Science. 2017, 26(4): 331–338.ADSCrossRefGoogle Scholar
  10. [10]
    Huang Z.F., Nakayama A., Yang K., Yang C., Liu W. En-hancing heat transfer in the core flow by using porous medium insert in a tube. International Journal of Heat and Mass Transfer. 2010, 53(5-6): 1164–1174.CrossRefMATHGoogle Scholar
  11. [11]
    Yu B.M., Liu W. Fractal analysis of permeabilities for porous media. AIChE Journal. 2004, 50(1): 46–57.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Quan X., Cheng P., Wu H. An experimental investigation on pressure drop of steam condensing in silicon microchannels. International Journal of Heat & Mass Transfer. 2008, 51(21): 5454–5458.CrossRefMATHGoogle Scholar
  13. [13]
    Huang X., Yang W., Ming T., Shen W., Yu X. Heat trans-fer enhancement on a microchannel heat sink with impinging jets and dimples. International Journal of Heat and Mass Transfer. 2017, 112: 113–124.CrossRefGoogle Scholar
  14. [14]
    Wang G., Cheng P., Bergles A.E. Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels. International Journal of Heat & Mass Transfer. 2008, 51(9-10): 2267–2281.CrossRefGoogle Scholar
  15. [15]
    Cooper D., Jackson D., Launder B., Liao G. Impinging jet studies for turbulence model assessment—I. Flow-field experiments. International Journal of Heat & Mass Transfer. 1993, 36(10): 2675–2684.CrossRefGoogle Scholar
  16. [16]
    Lee Y.J., Lee P.S., Chou S.K. Enhanced microchannel heat sinks using oblique fins. Conference Enhanced microchannel heat sinks using oblique fins. p. 253–260.Google Scholar
  17. [17]
    Chang S.W., Chiang K.F., Chou T.C. Heat transfer and pressure drop in hexagonal ducts with surface dimples. Experimental Thermal & Fluid Science. 2010, 34(8): 1172–1181.CrossRefGoogle Scholar
  18. [18]
    Ming T.Z., Ding Y., Gui J.L., Tao Y.X. Transient thermal behavior of a microchannel heat sink with multiple impinging jets. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering). 2015, 16(11): 894–909.CrossRefGoogle Scholar
  19. [19]
    Ming T.Z., Gui J.L., Peng C., Tao Y. Analysis of the hydraulic and thermal performances of a microchannel heat sink with extended-nozzle impinging jets. Heat Transfer Research. 2017, 48(10): 893–914.CrossRefGoogle Scholar
  20. [20]
    Seyf H.R., Zhou Z., Ma H.B., Zhang Y. Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement. International Journal of Heat & Mass Transfer. 2013, 56(1-2): 561–573.CrossRefGoogle Scholar
  21. [21]
    Zhuang Y., Ma C.F., Qin M. Experimental study on local heat transfer with liquid impingement flow in twodimensional micro-channels. International Journal of Heat & Mass Transfer. 1997, 40(97): 40554059.Google Scholar
  22. [22]
    Ming T., Cai C., Yang W., Shen W., Gan T. Optimization of dimples in microchannel heat sink with impinging jets—Part A: mathematical model and the influence of dimple radius. Journal of Thermal Science. 2018, 27(3): 195–202.ADSCrossRefGoogle Scholar

Copyright information

© Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tingzhen Ming
    • 1
    • 2
  • Cunjin Cai
    • 1
  • Wei Yang
    • 3
  • Wenqing Shen
    • 4
  • Wei Feng
    • 2
  • Nan Zhou
    • 2
  1. 1.School of Civil Engineering and ArchitectureWuhan University of TechnologyWuhanChina
  2. 2.China Energy Group, Environmental Energy Technologies DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Hubei Institute of Aerospace Chemical TechnologyXiangyangChina
  4. 4.G. W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations