Advertisement

Journal of Mountain Science

, Volume 16, Issue 6, pp 1336–1352 | Cite as

Glacier reconstruction of La Covacha Massif in Sierra de Gredos (central Spain) during the Last Glacial Maximum

  • Néstor CamposEmail author
  • David Palacios
  • Luis M. Tanarro
Article
  • 5 Downloads

Abstract

A paleoglacier reconstruction during the Last Glacial Maximum (LGM) is presented for a high mountain area of La Covacha massif in Sierra de Gredos (Iberian Central System) in central Spain. The moraines that, according with the previous literature, had formed during the global LGM, were mapped through photo interpretation of digital aerial photographs and 3D images and detailed field surveys. The topography of the paleoglaciers was estimated using a simple steady-state model that assumed a perfectly plastic ice rheology, reconstructing the theoretical ice profiles and obtaining the ice thickness of the glaciers during the LGM. The reconstruction of the glaciers was carried out using automated and semi-automated physically-based models, obtaining more realistic results with semi-automated models. According to our study, the paleoglaciers in the study area covered an area of 34.79 km2 during the global LGM, with a maximum ice thickness of 366 meters in La Vega gorge, a total volume of 34.25 × 108 m3 and a mean paleoELA of 1932 meters. Most of the ice (∼82%) was in paleoglaciers facing north, and the rest was in paleoglaciers with other orientations. This emphasizes the importance of orientation in relation to glacier dynamics and ice accumulation. The results obtained in the calculation of paleoELAs during the global LGM in Gredos are average compared to the Iberian mountains of the Northwest where the values were much lower, and with respect to those of the Southwest, much higher. This demonstrates the importance of the exposure of Mediterranean mountains to the humidity sources coming from the NW during the global LGM, as is the case at present.

Keywords

Glacier reconstruction Paleoglacier Ice thickness Equilibrium line altitude Iberian Central System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the project MOUNTAIN WARMING (CGL2015-65813-R) (Spanish Ministry of Economy and Competitiveness). The authors would like to thank to the anonymous reviewers and to the Professor Keith A. Brugger for their useful comments and suggestions that improved this manuscript.

References

  1. Andrews JT (1975) Glacial Systems. An Approach to Glaciers and Their Enrironments. North Scituate, Massachusetts: Duxbury Press.Google Scholar
  2. Ballantyne CK (1989) The Loch Lomond readvance on the Island of Skye, Scotland: glacier reconstruction and palaeoclimatic implications. Journal of Quaternary Science 4(2): 95–108.CrossRefGoogle Scholar
  3. Benn DI, Evans DJA (1998) Glaciers and Glaciation. London: Arnold.Google Scholar
  4. Benn DI, Gemmell A. MD (1997) Calculating equilibrium-line altitudes of former glaciers by the balance ratio method: a new computer spreadsheet. Glacial Geol Geomorphol. p 7.Google Scholar
  5. Benn DI, Hulton NRJ (2010) An Excel spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers and Geosciences 36(5): 605–610.  https://doi.org/10.1016/j.cageo.2009.09.016 CrossRefGoogle Scholar
  6. Benn DI, Owen LA, Osmaston HA, et al. (2005) Reconstruction of equilibrium-line altitudes for tropical and sub-tropical glaciers. Quaternary International 138–139: 8–21.  https://doi.org/10.1016/j.quaint.2005.02.003 CrossRefGoogle Scholar
  7. Campos N, Tanarro LM, Palacios D (2018) Geomorphology of glaciated gorges in a granitic massif (Gredos range, Central Spain). Journal of Maps 14(2): 321–329.  https://doi.org/10.1080/17445647.2018.1468829 CrossRefGoogle Scholar
  8. Carrasco RM, Pedraza J, Domínguez-Villar D, et al. (2008) El glaciarismo Pleistoceno de la Sierra de Béjar (Gredos occidental, Salamanca, España): nuevos datos para precisar su extensión y evolución [Pleistocene glaciarions of Sierra de Béjar (wetern Gredos, Salamanca, Spain): new data about its maximum extension and glacier evolution]. Newsletter of the Royal Spanish Society of Natural History 102: 35–45. (In spanish)Google Scholar
  9. Carrasco RM, Pedraza J, Domínguez-Villar D, et al. (2013) The plateau glacier in the Sierra de Béjar (Iberian Central System) during its maximum extent. Reconstruction and chronology. Geomorphology 196: 83–93.  https://doi.org/10.1016/j.geomorph.2012.03.019 CrossRefGoogle Scholar
  10. Carrasco RM, Pedraza J, Dominguez-Villar D, et al. (2015a) Sequence and chronology of the Cuerpo de Hombre paleoglacier (Iberian Central System) during the last glacial cycle. Quaternary Science Reviews 129: 163–177.  https://doi.org/10.1016/j.quascirev.2015.09.021 CrossRefGoogle Scholar
  11. Carrasco RM, Pedraza J, Domínguez-Villar D, et al. (2015b) La máxima extensión de los hielos en el Sistema Central Ibérico durante el último ciclo glaciar. [The maximum ice extent in the Iberian Central System during the Last Glacial Cycle]. XIV National Quaternary Meeting, Granada. pp 127–130. (In spanish)Google Scholar
  12. Clark PU, Dyke AS, Shakun JD, et al. (2009) The Last Glacial Maximum. Science 325(5941): 710–714.  https://doi.org/10.1126/science.1172873 CrossRefGoogle Scholar
  13. Clark PU, Shakun JD, Baker PA, et al. (2012) Global climate evolution during the last deglaciation. Proceedings of the National Academy os Sciences 109: E1134–E1142.  https://doi.org/10.1073/pnas.1116619109 CrossRefGoogle Scholar
  14. Cowton T, Hughes PD, Gibbard PL (2009) Palaeoglaciation of Parque Natural Lago de Sanabria, northwest Spain. Geomorphology 108(3–4): 282–291.  https://doi.org/10.1016/j.geomorph.2009.02.007 CrossRefGoogle Scholar
  15. Domínguez-Villar D, Carrasco RM, Pedraza J, et al. (2013) Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Scientific Reports 3: 2034.  https://doi.org/10.1038/srep02034 CrossRefGoogle Scholar
  16. Fernandes M, Oliva M, Palma P, et al. (2017) Glacial stages and post-glacial environmental evolution in the Upper Garonne valley, Central Pyrenees. Science of the Total Environment 584–585: 1282–1299.  https://doi.org/10.1016/j.scitotenv.2017.01.209 CrossRefGoogle Scholar
  17. Fernández-Fernández (2015) Aplicaciones de los sistemas de información geográfica en la reconstrucción paleoglaciar: el caso de la Sierra Segundera (Zamora, España)[Geographic Information Systems applied to paleoglacier reconstruction: the case of Sierra Segundera (Zamora, Spain)]. Geofocus 1: 87–118. (In spanish)  https://doi.org/10.1017/CBO9781107415324.004.Google Scholar
  18. Fernández-Fernández JM, Palacios D, García-Ruiz JM, et al. (2017) Chronological and geomorphological investigation of fossil debris-covered glaciers in relation to deglaciation processes: A case study in the Sierra de La Demanda, northern Spain. Quaternary Science Reviews 170: 232–249.  https://doi.org/10.1016/j.quascirev.2017.06.034 CrossRefGoogle Scholar
  19. García-Ruiz JM, Palacios D, González-Sampériz P, et al. (2016) Mountain glacier evolution in the Iberian Peninsula during the Younger Dryas. Quaternary Science Reviews 138: 16–30.  https://doi.org/10.1016/j.quascirev.2016.02.022 CrossRefGoogle Scholar
  20. Gross G, Kerschner H, Patzelt G. (1977) Methodische Untersuchungen über die Schneegrenze in alpinen Gletschergebieten [Methodological studies on the snow line in alpine glacier areas]. Zeitschrift für Getscherkd und Glazialgeologie 12: 223–251.Google Scholar
  21. Hawkins FF (1985) Equilibrium-line altitudes and paleoenvironment in the Merchants Bay area, Baffin Island, N.W.T., Canada. Journal of Glaciololgy 31(109): 205–213.  https://doi.org/10.1017/s0022143000006511 CrossRefGoogle Scholar
  22. Hernandez-Pacheco (1933) El glaciarismo cuaternario de la Serrota. [The quaternary glaciation of la Serrota]. Newsletter of the Royal Spanish Society of Natural History 33: 417–420. (In spanish)Google Scholar
  23. Hernández-Pacheco, Vidal-Box (1934) El glaciarismo cuaternario de la Serrota (Avila). [The quaternary glaciation of la Serrota (Avila)]. National Museum of Natural Sciences pp 1,59. (In spanish)Google Scholar
  24. Hughes DP, Woodward JC (2008) Timing of glaciation in the Mediterranean mountains during the last cold stage. Journal of Quaternary Science 23(6–7): 575–588.  https://doi.org/10.1002/jqs.1212 CrossRefGoogle Scholar
  25. Hughes DP, Woodward JC, Gibbard PL (2006) Quaternary glacial history of the Mediterranean mountains. Progress in Physical Geography: Earth and Environment 30(3): 334–364.  https://doi.org/10.1191/0309133306pp481ra CrossRefGoogle Scholar
  26. Hughes PD, Woodward JC, Gibbard PL (2006) Late Pleistocene glaciers and climate in the Mediterranean. Global and Planetary Change 50(1–2): 83–98.  https://doi.org/10.1016/j.gloplacha.2005.07.005 CrossRefGoogle Scholar
  27. Jalut G, Turu i Michels V, Dedoubat JJ, et al. (2010) Palaeoenvironmental studies in NW Iberia (Cantabrian range): Vegetation history and synthetic approach of the last deglaciation phases in the western Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 297(2): 330–350.  https://doi.org/10.1016/j.palaeo.2010.08.012 CrossRefGoogle Scholar
  28. Jiskoot H (2011) Dynamics of Glaciers. Encyclopedia of snow, ice and glaciers. In: Encyclopedia of snow, ice and glaciers. pp 245–256.Google Scholar
  29. Kanasewitch ER (1963) Gravity measurements on the Athabasca Glacier, Alberta, Canada. Journal of Glaciology 4(35): 617–631.  https://doi.org/10.3189/s0022143000028136 CrossRefGoogle Scholar
  30. Kern Z, László P (2010) Size specific steady-state accumulation-area ratio: An improvement for equilibrium-line estimation of small palaeoglaciers. Quaternary Sciences Review 29(19–20): 2781–2787.  https://doi.org/10.1016/j.quascirev.2010.06.033 CrossRefGoogle Scholar
  31. Sole-Sabarís L, de Terán M (1978) Geografia general de España [General geography of Spain]. Barcelona, Spain: Ariel. (In spanish)Google Scholar
  32. Lautensach H (1964) Die Iberische Halbinsel. [The Iberian Peninsula]. Munich: Keyser. (In German)Google Scholar
  33. Leonard EM (1989) Climatic change in the Colorado Rocky Mountains: Estimates based on modern climate at Late Pleistocene equilibrium lines. Arctic and Alpine Research 21(3): 245.  https://doi.org/10.2307/1551563 CrossRefGoogle Scholar
  34. Locke WW (1989) Present climate and glaciation of western Montana. Arctic and Alpine Research 21(3): 234.  https://doi.org/10.2307/1551562 CrossRefGoogle Scholar
  35. Martínez de Pisón E, Muñoz J (1972) Observaciones sobre la morfología del Alto Gredos. [Observations of the morphology of Alto Gredos]. Geographical Studies 129: 3–103. (In spanish)Google Scholar
  36. Martínez de Pisón E, Palacios D (1997) Significado del episodio glaciar en la evolución morfológica y en el paisaje de la Sierra de Gredos, Sistema Central. [The meaning of the glacial episode in the morphological evolution and in the landscape of Sierra de Gredos, Central System]. In: Gómez Ortiz A & Pérez Albertí A (ed.), Las huellas glaciares de las montañas españolas. [The glacial prints of the spanish mountains]. Santiago de Compostela. pp 163–207. (In spanish)Google Scholar
  37. Meier MF, Post AS (1962) Recent variations in mass net budgets of glaciers in western North America. Extract of publication no. 58 of the I.A.S.H. Commission of Snow and Ice, pp. 63–77.Google Scholar
  38. Meierding TC (1982) Late Pleistocene glacial equilibrium-line in the Colorado Front Range: A comparison of methods. Quaternary Research 18(3): 289–310.  https://doi.org/10.1016/0033-5894(82)90076-x CrossRefGoogle Scholar
  39. Munroe JS, Mickelson DM (2002) Last Glacial Maximum equilibrium-line altitudes and paleoclimate, northern Uinta Mountains, Utah, U.S.A. Journal of Glaciology 48: 257–266.  https://doi.org/10.3189/172756502781831331 CrossRefGoogle Scholar
  40. Nesje A, Dahl O (2000) Glaciers and Environmental Change. London: Arnold.Google Scholar
  41. Nesje A (1992) Topographical effects on the equilibrium-line altitude on glaciers. GeoJournal 27(4): 383–391.  https://doi.org/10.1007/BF00185102 CrossRefGoogle Scholar
  42. Dahl SO, Nesje A (1992) Equilibrium-line altitude depressions of reconstructed Younger Dyras and Holocene glaciers in Fosdalen, inner Nordfjord, western Norway. Norwegian Geological Journal 72: 209–216.Google Scholar
  43. Nye JF (1952) The mechanics of glacier flow. Journal of Glacialogy 2: 82–93.  https://doi.org/10.1017/s0022143000033967 CrossRefGoogle Scholar
  44. Obermaier H, Carandell J (1916) Contribución al estudio del glaciarismo cuaternario de la Sierra de Gredos. [Contribution to the study of the quaternary glaciation of Sierra de Gredos]. Works of the National Museum of Natural Sciences, Geological Series 14: 54. (In spanish)Google Scholar
  45. Ohmura A, Kasser P, Martin F (1992) Climate at the equilibrium line of glaciers. Journal of Glaciolgy 38: 397–411.  https://doi.org/10.3189/s0022143000002276 CrossRefGoogle Scholar
  46. Osmaston H (2005) Estimates of glacier equilibrium line altitudes by the Area x Altitude, the Area x Altitude Balance Ratio and the Area x Altitude Balance Index methods and their validation. Quaternary International 138–139: 22–31.  https://doi.org/10.1016/j.quaint.2005.02.004 CrossRefGoogle Scholar
  47. Palacios D, Marcos J, Vázquez-Selem L (2011) Last Glacial Maximum and Deglaciation of Sierra de Gredos, Central Iberian Peninsula. Quaternary International 233: 16–26.  https://doi.org/10.1016/j.quaint.2010.04.029 CrossRefGoogle Scholar
  48. Palacios D, Marcos J, Vázquez-selem L (2011a) Last Glacial Maximum and deglaciation of Sierra de Gredos, central Iberian Peninsula. Quaternary International 233: 16–26.  https://doi.org/10.1016/j.quaint.2010.04.029 CrossRefGoogle Scholar
  49. Palacios D, de Andrés N, de Marcos J, et al. (2011b) Glacial landforms and their paleoclimatic significance in Sierra de Guadarrama, Central Iberian Peninsula. Geomorphology 139–140: 67–78.  https://doi.org/10.1016/j.geomorph.2011.10.003 Google Scholar
  50. Palacios D, Andrés N, Marcos J, et al.(2012) Maximum glacial advance and deglaciation of the Pinar Valley (Sierra de Gredos, Central Spain) and its significance in the Mediterranean context. Geomorphology 177–178: 51–61.  https://doi.org/10.1016/j.geomorph.2012.07.013 CrossRefGoogle Scholar
  51. Palacios D, de Andrés N, Gómez-Ortiz A, et al. (2017) Evidence of glacial activity during the Oldest Dryas in the mountains of Spain. Geol Soc London, Spec Publ. 433: 87–110.  https://doi.org/10.1144/SP433.10 CrossRefGoogle Scholar
  52. Palma P, Oliva M, García-Hernández C, et al. (2017) Spatial characterization of glacial and periglacial landforms in the highlands of Sierra Nevada (Spain). Science of the Total Environment 584–585: 1256–1267.  https://doi.org/10.1016/j.scitotenv.2017.01.196 CrossRefGoogle Scholar
  53. Paterson (1994) The Physics of Glaciers. (3rd ed.). Oxford: Elsevier.Google Scholar
  54. Pearce DM, Ely JC, Barr ID, et al. (2017) Glacier Reconstruction, in Geomorphological Techniques, British Society for Geomorphology. Chap. 3, Sec. 4.9. p 16.Google Scholar
  55. Pedraza J, Carrasco RM, Domínguez-Villar D, et al. (2013) Late Pleistocene glacial evolutionary stages in the Gredos Mountains (Iberian Central System). Quaternary International 302: 88–100.  https://doi.org/10.1016/j.quaint.2012.10.038 CrossRefGoogle Scholar
  56. Pellitero R (2012) Geomorfología, paleoambiente cuaternario y geodiversidad en el macizo de Fuentes Carrionas-Montaña Palentina. [Geomorphology, quaternary paleoenvironment and geodiversity in Fuentes Carrionas massif-Montaña Palentina]. Universidad de Valladolid, Valladolid, Spain. (In spanish)Google Scholar
  57. Pellitero R, Rea BR, Spagnolo M, et al. (2015) A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers and Geosciences 82: 55–62.  https://doi.org/10.1016/j.cageo.2015.05.005 CrossRefGoogle Scholar
  58. Pellitero R, Rea BR, Spagnolo M, et al. (2016) GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers and Geosciences 94: 77–85.  https://doi.org/10.1016/j.cageo.2016.06.008 CrossRefGoogle Scholar
  59. Porter SC (1975) Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand. Quat Res 5: 27–47.  https://doi.org/10.1016/0033-5894(75)90047-2 CrossRefGoogle Scholar
  60. Porter SC (2000) Snowline depression in the tropics during the last glaciation. Quaternary Science Reviews 20: 1067–1091.  https://doi.org/10.1016/S0277-3791(00)00178-5 CrossRefGoogle Scholar
  61. Rea BR (2009) Defining modern day Area-Altitude Balance Ratios (AABRs) and their use in glacier-climate reconstructions. Quaternary Science Reviews 28: 237–248.  https://doi.org/10.1016/j.quascirev.2008.10.011 CrossRefGoogle Scholar
  62. Rea BR, Evans DJA (2007) Quantifying climate and glacier mass balance in north Norway during the Younger Dryas. Palaeogeography, Palaeoclimatololfy, Palaeoecology 246: 307–330.  https://doi.org/10.1016/j.palaeo.2006.10.010 CrossRefGoogle Scholar
  63. Rea BR, McDougall DA, Whalley WB, et al. (1998) Plateau icefields: Geomorphology and dynamics. Journal of Quaternary Science 13: 35–54.Google Scholar
  64. Rodríguez-Rodríguez L, Jiménez-Sánchez M, Domínguez-Cuesta MJ, et al. (2011) Last deglaciation in northwestern Spain: New chronological and geomorphologic evidence from the Sanabria region. Geomorphology 135: 48–65.  https://doi.org/10.1016/j.geomorph.2011.07.025 CrossRefGoogle Scholar
  65. Rodríguez-Rodríguez L, Jiménez-Sánchez M, Domínguez-Cuesta MJ, et al. (2016) Chronology of glaciations in the Cantabrian Mountains (NW Iberia) during the Last Glacial Cycle based on in situ-produced 10Be. Quaternary Science Reviews 138: 31–48.  https://doi.org/10.1016/j.quascirev.2016.02.027 CrossRefGoogle Scholar
  66. Rodríguez-Rodríguez L, Jiménez-Sánchez M, Domínguez-Cuesta MJ, et al. (2014) A multiple dating-method approach applied to the Sanabria Lake moraine complex (NW Iberian Peninsula, SW Europe). Quaternary Science Reviews 83: 1–10.  https://doi.org/10.1016/j.quascirev.2013.10.019 CrossRefGoogle Scholar
  67. Santos-González J, Redondo-Vega JM, González-Gutiérrez RB, et al. (2013) Applying the AABR method to reconstruct equilibrium-line altitudes from the last glacial maximum in the Cantabrian Mountains (SW Europe). Palaeogeography, Palaeoclimatology, Palaeoecology 387: 185–199.  https://doi.org/10.1016/j.palaeo.2013.07.025 CrossRefGoogle Scholar
  68. Sanz Donaire (1977) El glaciarismo en la cara sur del macizo del El Barco de Avila. [The glaciation on the south slope of Barco de Avila massif] In: V Coloquio de Geografía, Granada. pp 41–47. (In spanish)Google Scholar
  69. Sanz Donaire (1981) El macizo glaciarizado de El Barco de Avila (Provincias de Avila-Caceres)[The glacialized massif of Barco de Avila]. Anales de Geografía de la Universidad Complutense 1: 184–205. (In spanish)Google Scholar
  70. Schilling DH, Hollin J (1981) Numerical reconstructions of valley glaciers and small ice caps. In: Denton GH, Hughes TJ. (Eds.), The Last Great Ice Sheets. New York: Wiley. pp 207–220.Google Scholar
  71. Serrano Cañadas E, González Trueba JJ (2004) El método AAR para la determinación de paleo-ELAs: análisis metodológico y aplicación en el Macizo de Valdecebollas (Cordillera Cantábrica). [The AAR method to the paleo-ELAs calcularion: methodological analysis and application in Valdecebollas bassid (Cantabrian Mountains)]. Geographical Research Letters 30: 7–34. (In spanish)Google Scholar
  72. Serrano E, González-Trueba JJ, González-García M (2012) Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quat Res (United States) 78: 303–314.  https://doi.org/10.1016/j.yqres.2012.05.016 Google Scholar
  73. Serrano E, González-Trueba JJ, Pellitero R, et al. 2013. Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain). Geomorphology 196: 65–82.  https://doi.org/10.1016/j.geomorph.2012.05.001 CrossRefGoogle Scholar
  74. Sutherland DG (1984) Modern glacier characteristics as a basis far inferring former climates with particular reference to the Loch Lomond Stadial. Quaternary Science Reviews 3: 291–309.  https://doi.org/10.1016/0277-3791(84)90010-6 CrossRefGoogle Scholar
  75. Van der Veen CJ (1999) Fundamentals of Glacier Dynamics. Rotterdam: Balkema.Google Scholar
  76. De Vicente G (2004) Estructura alpina del Antepaís Ibérico. [Alpine structure of Iberian “Antepaís”]. Geology of Spain. Geological Society of Spain. Geological and Mining Institute of Spain, Madrid. pp 587–634. (In spanish)Google Scholar
  77. Vidal-Box C (1934) Los glaciares cuaternarios de la Sierra del Bohoyo (Avila)[Quaternary glaciers of Sierra del Bohoyo (Avila)]. Newsletter of the Royal Spanish Society of Natural History. (In spanish)Google Scholar
  78. Vieira G (2008) Combined numerical and geomorphological reconstruction of the Serra da Estrela plateau icefield, Portugal. Geomorphology 97: 190–207.  https://doi.org/10.1016/j.geomorph.2007.02.042 CrossRefGoogle Scholar
  79. Villar H del (1915) Los glaciares de Gredos. [The glaciers of Gredos]. Newsletter of the Royal Spanish Society of Natural History 15: 379–390. (In spanish)Google Scholar
  80. Villar H del (1917) Nueva contribución a la glaciología de Gredos, las Hoyuelas del Hornillo. [New contribution to the Gredos glaciology, las Hoyuelas del Hornillo]. Newsletter of the Royal Spanish Society of Natural History 17: 58–567. (In spanish)Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeographyComplutense University of MadridMadridSpain

Personalised recommendations