Advertisement

Journal of Mountain Science

, Volume 15, Issue 10, pp 2103–2119 | Cite as

Spatial distribution of morphometric parameters of glacial cirques in the Central Pyrenees (Aran and Boí valleys)

  • Luis Lopes
  • Marc Oliva
  • Marcelo Fernandes
  • Paulo Pereira
  • Pedro Palma
  • Jesús Ruiz-Fernández
Article
  • 2 Downloads

Abstract

Glacial cirques are typical landscape features of mid-latitude mountain environments like the Central Pyrenees. Their morphology as well as their spatial distribution provides insights about past glaciers and climates. In this study, we examine the distribution, morphometrical and topographical characteristics of glacial cirques in two U-shaped glacial valleys located in the Central Pyrenees–the Aran and the Boí valleys. They are located in different aspects of this mountain range (north vs south) under different climatic influences that promoted distinct glaciation patterns during the late Pleistocene. The spatial mapping of these landforms was carried out using high-resolution imagery and field observations. We analysed the data of the morphometrical and topographical variables of the glacial cirques by using different statistical and geospatial methods in order to unveil the factors controlling their formation and development. A total of 186 glacial cirques were mapped in the study area, including 119 in the Aran and 67 in the Boí valleys. The local topography and microclimate conditions lead to substantial differences in both areas in terms of the morphology and dimensions of the cirques. Glacial cirques in Boí are distributed at slightly higher elevations than in Aran and they are also larger, though their dimensions decrease with elevation in both valleys. Aran cirques are mostly oriented NE, while Boí landforms do not show any prevailing aspect. Even though lithology does not control the distribution of the glacial cirques, some specific lithological settings may favour the development of larger cirques. In general, glacial cirques in the Aran and the Boí valleys show morphometrical properties similar to those reported in other mid-latitude mountain ranges.

Keywords

Central Pyrenees Aran and Boí valleys glacial cirques topography morphometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Field work was supported by the Research Group Climate Change and Environmental Systems (ZEPHYRUS) of the Institute of Geography and Spatial Planning of the University of Lisbon and a grant from the Erasmus + LLP Programme Grant funding the research stay of Luis Lopes at the University of Barcelona. Marc Oliva is supported by the Ramón y Cajal Program of the Spanish Ministry of Economy and Competitiveness (RYC-2015-17597). Financial support was also provided by the research group ANTALP (Antarctic, Arctic and Alpine environments, 2017-SGR-1102) and the PALEOGREEN (CTM2017-87976-P) and CRONOANTAR (CTM2016-77878-P) projects of the Spanish Ministry of Economy and Competitiveness.

References

  1. Aniya M, Welch R (1981) Morphometric analyses of Antarctic cirques from photogrammetric measurements. Geografiska Annaler: Series A, Physical Geography 63(1–2): 41–53.  https://doi.org/10.2307/520563 CrossRefGoogle Scholar
  2. Barr LD, Spagnolo M (2015) Glacial cirques as palaeoenvironmental indicators: Their potential and limitations. Earth–Science Reviews 151: 48–78.  https://doi.org/10.1016/j.earscirev.2015.10.004 Google Scholar
  3. Barr ID, Ely JC, Spagnolo M, et al. (2017) Climate patterns during forming periods of mountain glaciation in Britain and Ireland: Inferences from cirque record. Palaeogegraphy, Palaeoclimatology, Palaeoecology 485: 466–475.  https://doi.org/10.1016/j.palaeo.2017.07.001 CrossRefGoogle Scholar
  4. Bordonau J (1992) Els complexos glacio–lacustres relacionats amb el darrer cicle glacial als Pirineus. PhD Thesis, Barcelona University, Barcelona, Spain. (The glacier–lacustrine complexes related to the last glacial cycle in the Pyrenees (In Catalan))Google Scholar
  5. Calvet C, Delmas M, Gunnell Y, et al. (2011) Recent Advances in research on Quaternary glaciations in the Pyrenees. In: Ehlers J, Gibbard PL, Hughes PD, editors: Developments in Quaternary Science, Vol. 15, Amsterdam, The Netherlands. pp. 127–139.  https://doi.org/10.1016/B978-0-444-53447-7.00011-8
  6. Calvet M (2004) The Quaternary glaciation of the Pyrenees. Ehlers J, Gibbard P (Eds.) Quaternary Glaciations–Extent and Chronology, Part I: Europe. Elsevier, Amsterdam, Holland. pp 119–128.  https://doi.org/10.1016/s1571-0866(04)80062-9
  7. Chueca J, Julián A (2011) Besiberris glacigenic rock glacier (Central Pyrenees, Spain): mapping surface horizontal and vertical movement (1993–2003). Cuadernos de Investigación Geográfica, 37 (2): 7–24.  https://doi.org/10.18172/cig.1254 Google Scholar
  8. Clark PU, Dyke AS, Shakun JD, et al. (2009) The Last Glacial Maximum. Science 325: 710.  https://doi.org/10.1126/science.1172873 CrossRefGoogle Scholar
  9. Coleman CG, Carr SJ, Parker AG (2009) Modelling topoclimatic controls on palaeoglaciers: implications for inferring palaeoclimate from geomorphic evidence. Quaternary Science Reviews 28 (3): 249–259.  https://doi.org/10.1016/j.quascirev.2008.10.016 Google Scholar
  10. De Bolós O (2001) Vegetació dels Països Catalans. Aster Editorial, Terrassa. (In Catalan)Google Scholar
  11. Davis PT (1999) Cirques of the Presidential Range, New Hampshire, and surrounding alpine areas in the northeastern United States. Géographie physique et Quaternaire 53 (1): 25–45.  https://doi.org/10.7202/004784ar Google Scholar
  12. Delmas M (2015) The last maximum ice extent and subsequent deglaciation of the Pyrenees: an overview of recent research. Cuadernos de Investigación Geográfica 41 (2): 359–387.  https://doi.org/10.18172/cig.2708
  13. Delmas M, Gunnell Y, Braucher R, et al. (2008). Exposure age chronology of the last Glaciation in the eastern Pyrenees. Quaternary Research, 69 (2): 231–241.  https://doi.org/10.1016/j.yqres.2007.11.004 Google Scholar
  14. Delmas M, Gunnell Y, Calvet M (2014) Environmental controls on alpine cirque size. Geomorphology 206: 318–329.  https://doi.org/10.1016/j.geomorph.2013.09.037 CrossRefGoogle Scholar
  15. Depellegrin D, Pereira P, Misiune I, et al. (2016) Mapping ecosystem services potential in Lithuania. International Journal of Sustainable Development & World Ecology 23: 441–455.  https://doi.org/10.1080/13504509.2016.1146176 CrossRefGoogle Scholar
  16. Derbyshire E, Evans IS (1976). The climatic factor in cirque variation. In: Derbyshire E (ed.): Geomorphology and Climate. John Wiley & Sons. Chichester, UK. pp 447–494.Google Scholar
  17. Domínguez–Villar D, Carrasco RM, Pedraza J, et al. (2013) Early maximum extent of paleoglaciers from Mediterranean mountains during the Last Glaciation. Scientific Reports, 3, 2034.  https://doi.org/10.1038/srep02034 Google Scholar
  18. Evans IS (1977) World–wide variations in the direction and concentration of cirque and glaciers aspects. Geografiska Annaler, Series A, Physical Geography 59 (3–4): 151–169.  https://doi.org/10.2307/520797 Google Scholar
  19. Evans IS (1990) Climatic effect on glacier distribution across the southern coast mountains. B. C., Canada. Annals of Glaciology 14: 58–64.  https://doi.org/10.3189/s0260305500008272 CrossRefGoogle Scholar
  20. Evans IS (2004) Cirque, glacial. In: Goudie AS (ed.), Encyclopedia of Geomorphology. Routledge, London, UK. pp 154–158.Google Scholar
  21. Evans IS (2006a) Local aspect asymmetry of mountain glaciation: A global survey of consistency of favored directions for glacier number and altitudes. Geomorphology 73: 166–184.  https://doi.org/10.1016/j.geomorph.2005.07.009 CrossRefGoogle Scholar
  22. Evans IS (2006b) Allometric development of glacial cirque form: Geological, relief and regional effects on the cirques of Wales. Geomorphology 80: 245–266.  https://doi.org/10.1016/j.geomorph.2006.02.013 CrossRefGoogle Scholar
  23. Evans IS, Cox NJ (1995) The form of glacial cirques in the English Lake District, Cumbria. Zeitschrift für Geomorphologie, N.F. 39 (2): 175–202.Google Scholar
  24. Evans IS, Cox NJ (2015) Size and shape of glacial cirques: comparative data in specific geomorphometry. In: Jasiewicz J et al. (eds.), Adam Mickiewicz University in Poznań–Institute of Geoecology and Geoinformation, International Society for Geomorphometry, Poznań, Poland. pp 79–82. ISBN: 978–83–7986–059–3Google Scholar
  25. Federici PR, Spagnolo M (2004) Morphometric analysis on the size, shape and areal distribution of glacial cirques in the Maritime Alps (Western French–Italian Alps). Geografiska Annaler: Series A, Physical Geography 86 (3): 235–248.  https://doi.org/10.1111/j.0435-3676.2004.00228.x Google Scholar
  26. Fernandes M, Oliva M, Palma P, et al. (2017) Glacial stages and post–glacial environmental evolution in the Upper Garonne valley, Central Pyrenees. Science of the Total Environment 584–585: 1282–1299.  https://doi.org/10.1016/j.scitotenv.2017.01.209Garcia CrossRefGoogle Scholar
  27. Ruiz JM, Gómez–Villar A, Ortigosa L, et al. (2000) Morphometry of glacial cirques in the Central Spanish Pyrenees. Geografiska Annaler: Series A, Physical Geography 82A (4): 433–442.  https://doi.org/10.1111/j.0435-3676.2000.00132.x Google Scholar
  28. García–Ruiz JM, Moreno A, González–Sampériz P, et al. (2010) La cronología del último ciclo glaciar en las montañas del sur de Europa. Una revisión. Revista Cuaternario y Geomorfología 24 (1–2): 35–46. ISSN: 0214–1744. (The chronology of the last glacial cycle in the mountains of southern Europe. A review. (In Spanish))Google Scholar
  29. García–Ruiz JM, Palacios D, González–Sampériz P, et al. (2016) Mountain glacier evolution in the Iberian Peninsula during the Younger Dryas. Quaternary Science Reviews 138: 16–30.  https://doi.org/10.1016/j.quascirev.2016.02.022 CrossRefGoogle Scholar
  30. Gómez–Villar A, Santos–González J, González–Gutiérrez RB, et al. (2015) Glacial cirques in the southern side of the Cantabrian Mountains of southwestern Europe. Geografiska Annaler: Series A, Physical Geography 97: 633–651.  https://doi.org/10.1111/geoa.12104 CrossRefGoogle Scholar
  31. Gordon JE (1977) Morphometry of cirques in the Kintail–Affric–Cannich area of northwest Scotland. Geografiska Annaler Series A Physical Geography 59: 177–194.  https://doi.org/10.2307/520798 CrossRefGoogle Scholar
  32. Hassinen S (1998) A morpho–statistical study of cirques and cirque glaciers in the Senja–Kilpisjärvi area, northern Scandinavia. Norsk Geografisk Tidsskrift–Norwegian Journal of Geography 52(1): 27–36.  https://doi.org/10.1080/00291959808552381 CrossRefGoogle Scholar
  33. Hughes PD, Woodward JC, Gibbard PL (2006) Quaternary glacial history of the Mediterranean mountains. Progress in Physical Geography 30 (3): 334–364.  https://doi.org/10.1191/0309133306pp481ra CrossRefGoogle Scholar
  34. Hughes PD, Gibbard PL, Woodward JC (2007) Geological controls on Pleistocene glaciation and cirques form in Greece. Geomorphology 88: 242–253.  https://doi.org/10.1016/j.geomorph.2006.11.008 CrossRefGoogle Scholar
  35. Hughes PD (2014) Little Ice Age glaciers in the Mediterranean mountains–Glaciers du petit âge de glace en Méditerranée. Méditerranée n 122.  https://doi.org/10.4000/mediterranee.7146 Google Scholar
  36. Krizek M, Mida P (2013) The influence of aspect and altitude on the size, shape and spatial distribution of glacial cirques in the High Tatras (Slovakia, Poland). Geomorphology 198: 57–68.  https://doi.org/10.1016/j.geomorph.2013.05.012 CrossRefGoogle Scholar
  37. López–Moreno JI, Revuelto J, Rico I, et al. (2016) Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. The Cryosphere 10: 681–694.  https://doi.org/10.5194/tc-10-681-201. CrossRefGoogle Scholar
  38. Marinescu E (2007) The morphometry of the glacial cirques within the Gilort Basin. Analele Universităţii din Craiova. Seria Geografie 10: 5–12.Google Scholar
  39. Mindrescu M, Evans IS (2014) Cirque form and development in Romania: Allometry and the buzzsaw hypothesis. Geomorphology 208: 117–136.  https://doi.org/10.1016/j.geomorph.2013.11.019 CrossRefGoogle Scholar
  40. Monserrat MS (1988) Estudi geomorfològic del massís central de la Vall d’Aran (Pirineu Central). BSc Thesis, Barcelona University, Barcelona, Spain. (Geomorphological study of the central massif of the Vall d'Aran (Central Pyrenees) (In Catalan))Google Scholar
  41. Ni J, Chen Y–L, Wang P, et al. (2017) Effects of chemical erosion and freeze–thaw cycling on the physical and mechanical characteristics of granites. Bulletin of Engineering Geology and the Environment 76: 169–179.  https://doi.org/10.1007/s10064-016-0891-5 CrossRefGoogle Scholar
  42. Palacios D, Andrés N, López–Moreno JI, et al. (2015a) Late Pleistocene deglaciation in the upper Gállego Valley, central Pyrenees. Quaternary Research 83(3): 397–414.  https://doi.org/10.1016/j.yqres.2015.01.010 CrossRefGoogle Scholar
  43. Palacios D, Gómez–Ortiz A, Andrés N, et al. (2015b) Maximum extent of Late Pleistocene glaciers and last deglaciation of La Cerdanya mountains, Southeastern Pyrenees. Geomorphology 231: 116–129.  https://doi.org/10.1016/j.geomorph.2014.10.037 CrossRefGoogle Scholar
  44. Palacios D, Gómez–Ortiz A, Andrés N, et al. (2016) Timing and new geomorphologic evidence of the last deglaciation stages in Sierra Nevada (southern Spain). Quaternary Science Reviews 150: 110–129.  https://doi.org/10.1016/j.quascirev.2016.08.012 CrossRefGoogle Scholar
  45. Pallàs R, Rodés A, Braucherb R, et al. (2006) Late Pleistocene and Holocene glaciation in the Pyrenees: a critical review and new evidence from 10Be exposure ages, south–central Pyrenees. Quaternary Science Reviews 25 (21–22): 2937–2963.  https://doi.org/10.1016/j.quascirev.2006.04.004 CrossRefGoogle Scholar
  46. Pereira P, Cerdà A, Úbeda X, et al. (2015) Modelling the impacts of wildfire on ash thickness in a short–term period. Land Degradation and Development 26: 180–192.  https://doi.org/10.1002/ldr.2195 CrossRefGoogle Scholar
  47. Ruiz–Fernández J, Poblete–Piedrabuena MA, Serrano–Muela MP, et al. (2009) Morphometry of glacial cirques in the Cantabrian Range (Northwest Spain). Zeitschrift für Geomorphologie 53 (1): 47–68.  https://doi.org/10.1127/0372-8854/2009/0053-0047
  48. Serrat D, Martí M, Bordunau J (1994a) Geologia, Geomofologia e Risques, em: Geografia Física. Atlas comarcau de Catalunya–Val d’Aran. Institut Cartogràfic de Catalunya. Generalitat de Catalunya.Google Scholar
  49. Serrat D, Bordonau J, Bru J, et al. (1994b) Síntesis cartográfica del glaciarismo surpirenaico oriental. Martí Bono C, García–Ruiz JM (eds.), El Glaciarismo Surpirenaico: Nuevas Aportaciones. Geoforma Ediciones, Logroño, Spain. pp 9–15. (Cartographic synthesis of the oriental surpirenaico glaciarismo. Martí Bono C, García–Ruiz JM (eds.): The Surpirenaic Glaciarism: New Contributions. (In Spanish))Google Scholar
  50. Trenhaile AS (1975) Cirque elevation in the Canadian Cordillera. Annals of the Association of American Geographers, 65(4): 517–529.  https://doi.org/10.1111/j.1467-8306.1975.tb01059.x CrossRefGoogle Scholar
  51. Turu V, Calvet M, Bordonau J, et al. (2016) Did Pyrenean glaciers dance to the beat of global climatic events? Evidence from the Würmian sequence stratigraphy of an ice–dammed palaeolake depocentre in Andorra. In: Hughes PD et al. (eds.), Quaternary Glaciation in the Mediterranean Mountains. Geological Society, Special Publications, London, UK. pp 433.  https://doi.org/10.1144/SP433.6#2016 Google Scholar
  52. Vilaplana JM (1983) Estudi del glaciarisme quaternari de les Altes Valls de la Ribargorça. PhD Thesis, Barcelona University, Barcelona, Spain. (Study of the quaternary glaciation of the high valleys of La Ribagorça (In Catalan))Google Scholar

Copyright information

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Geographical Studies–IGOTUniversidade de LisboaLisbonPortugal
  2. 2.Department of GeographyUniversity of BarcelonaBarcelonaSpain
  3. 3.Environmental Management CenterMykolas Romeris UniversityVilniusLithuania
  4. 4.Department of GeographyUniversity of OviedoOviedoSpain

Personalised recommendations